非局域性研究历来集中在爱因斯坦-波多尔斯基-罗森悖论和贝尔不等式的情景上。在这种所谓的贝尔情景中,单个源发射出成对的粒子,这些粒子分布在两方之间,双方在空间上分开的位置独立测量这些粒子,然后比较它们的统计数据。近年来,非局域性研究已经超越了贝尔情景,开始考虑网络情景中可能出现的相关性 [1]。网络具有多个独立源,这些源发射粒子,然后根据特定的网络架构在多个方之间分配。例如,最简单的网络称为双局域情景 [2,3],有两个独立源,每个源分配一对粒子;一个在 Alice 和 Bob 之间,另一个在 Bob 和 Charlie 之间。这与在最简单的纠缠交换形式中遇到的情景相同 [4]。众所周知,与贝尔情景相比,引入多个独立源使得网络中非局域性的技术分析更具挑战性。然而,网络也提供了新的概念见解。例如,这涉及量子力学中复数的使用[5-7],无需输入的设备独立认证[8],单光子的非局部性[9],测量依赖性的上限[10]和广义概率理论的检验[11]。人们已经开发出一些计算方法,主要基于膨胀的想法,从外部限制网络中局域[12]、量子[13,14]和后量子[15]相关性的集合。对网络非局部性的探索已经产生许多针对不同网络架构的非局部性标准,例如双局部场景[2,3,16]、链式场景[3,17,18]、星式场景[19,20]以及许多其他场景(参见例如[21-27])。一个特别神秘的网络是所谓的三角场景。它包含三个参与方,即 Alice、Bob 和 Charlie,以及三个源,每个源在参与方之间发射一对粒子(见图 1)。这个网络之所以特别有趣,是因为它是最简单的场景,其中每个参与方都通过共享源与其他参与方相连。它可以被认为是全连通图的最简单实例,其中顶点代表参与方,边代表源,每个源都发射彼此共享的独立粒子对。可以在三角中创建非局域性
离散时间量子游动是经典随机游动的量子泛化,为凝聚态系统的量子信息处理、量子算法和量子模拟提供了框架。量子游动的关键特性是其量子信息应用的核心,与经典随机游动相比,量子游动在传播中可以实现参数量子加速。在这项工作中,我们研究了量子游动在渗透产生的二维随机晶格上的传播。在拓扑和平凡分步游动的大规模模拟中,我们在不同的时间尺度上确定了不同的预扩散和扩散行为。重要的是,我们表明,即使是任意弱的随机移除晶格位点浓度也会导致超扩散量子加速的完全崩溃,从而将运动降低为普通扩散。通过增加随机性,量子游动最终会由于 Anderson 局域化而停止扩散。在局域化阈值附近,我们发现量子游动变为亚扩散。量子加速的脆弱性意味着随机几何和图上的量子游动的量子信息应用将受到巨大限制。
摘要:我们通过考虑测量引起的非局域性 (MIN) 对黑洞附近的量子关联进行了系统且互补的研究。在霍金辐射方面,我们讨论了费米子、玻色子和混合费米子-玻色子模式中感兴趣的量子测度。所得结果表明,在无限霍金温度极限下,物理上可访问的关联仅在费米子情况下不会消失。然而,较高频率模式可以在有限霍金温度下维持关联,混合系统对费米子频率的增加比玻色子系统更敏感。由于后一种模式的 MIN 迅速减小,因此增加频率可能是在有限霍金温度下维持非局域关联的一种方式。
这是推导贝尔不等式所需的唯一假设。λ 表示系统状态,可用任何可能的未来物理理论描述(但假设 x 和 y 与 λ 无关)。从这个意义上说,贝尔不等式远远超出了量子理论:违反贝尔不等式证明没有未来理论能够满足局域性条件 (1)。约翰·克劳泽、阿布纳·希莫尼、迈克尔·霍恩和理查德·霍尔特是 20 世纪 60 年代少数理解这一点的人,他们都想检验贝尔不等式,克劳泽想证明量子理论是错误的,而哈佛大学的年轻学生霍尔特想证明贝尔局域性假设 (1) 是错误的。得益于伯克利现有的设备,克劳泽处于有利地位。事实上,卡尔·科克尔也在 1967 年做过类似的实验,不过是出于其他目的。不幸的是,Kocher,甚至更早的吴建雄,只测量了偏振器平行或正交时的关系,而真正违反贝尔不等式需要中间取向。请注意,假设偏振是一个二维量子系统,即今天所说的量子比特,则可以从假设无信号传输的平行和正交关系中推导出 45° 关系 [1]:E 45 = (E +E )/√ – 2。这在当时并不为人所知。但无论如何,Kocher 和吴测得的可见度低于 50%,而真正违反贝尔不等式需要可见度大于 71%。因此,竞赛开始了。Clauser 先到了一步,证实了量子预测,这出乎他的意料。但随后 Holt 也得到了自己的结果,证实了不等式,这出乎他的意料。不知何故,比分竟然是一比一。当时,这些迷人而有趣的结果几乎没有引起任何人的兴趣,除了一些嬉皮士,他们后来可以声称拯救了物理学[2]。克劳塞与他们进行了长时间的讨论,尽管我最后一次见到他时,他已经变成了一个大声的气候怀疑论者。20世纪70年代,我的朋友阿兰·阿斯派克特在非洲做法国公务员,像我们所有人一样阅读物理学。当他偶然发现贝尔不等式时,他一见钟情:“我想研究它”。回到巴黎后,他前往日内瓦会见约翰·贝尔,并告诉他自己的计划。贝尔回答说:“你有永久职位吗?”事实上,在那个时代,研究贝尔不等式——甚至只是表现出对它的兴趣——都是一种科学自杀。教条认为,玻尔已经解决了所有问题。回想起来,很难理解玻尔被贬低得有多深
随着在制造和控制由越来越多的量子比特组成的量子设备方面取得的巨大进步,我们现在进入了嘈杂中型量子技术的时代[1]。在控制不同平台上的量子自由度方面已经取得了相关进展[2-4]。然而,在某种程度上,控制这些系统动力学的真正汉密尔顿量往往(至少)部分未知。在这种情况下,最大的挑战是在物理直觉的指导下,推断出一个能够与实验数据相匹配的量子系统的真实汉密尔顿模型。通过查询设备(假设为一个黑匣子),可以测量几个可观测量的时间演变,以学习系统汉密尔顿量。这个过程被称为汉密尔顿学习,多年来一直是量子计算的基础。
采用弱酸性电解液并采用 Zn 2+ /H + 双离子存储机制的水系锌离子电池在实现可与非水系锂离子电池媲美的高能量密度方面表现出巨大潜力。这项研究表明,水合碱离子调节碱金属插层钒酸盐层状化合物的形成。在各种钒酸盐材料中,锂插层钒酸盐具有最大的层间距和最无序的局部结构,在 0.05 A g -1 的 Zn 2+ /H + 双离子存储下表现出最大的存储容量 308 mAh g -1,并且原位 X 射线衍射和非原位 X 射线全散射和对分布函数分析证明了它具有改善的电荷转移和传输动力学和循环性能。我们的研究为设计用于高容量水系电池的层状钒酸盐材料提供了新的见解。
当光子撞击平衡分束器时,会获得单光子最大纠缠态。其非局部性质在量子光学和基础界引起了激烈的争论。然而,很明显,仅由无源光学元件制成的标准贝尔测试无法揭示这种状态的非局部性。我们表明,单光子纠缠态的非局部性仍然可以在仅由分束器和光电探测器组成的量子网络中揭示。在我们的协议中,三个单光子纠缠态分布在一个三角形网络中,在光子路径中引入了不确定性,并创建了非局部相关性,而无需进行测量选择。我们讨论了一个具体的实验实现,并提供了我们的协议对标准噪声源耐受性的数值证据。我们的结果表明,单光子纠缠可能是一种有希望的解决方案,可以生成真正的网络非局部相关性,可用于基于贝尔的量子信息协议。
非局域性是一个引人注目的概念,自量子理论诞生之初 [1,2] 至今,它一直吸引着学术界越来越多的兴趣。无论是通过贝尔非局域性 [3,4]、量子操控 [5,6]、一般的量子纠缠 [7],还是更广泛的量子不和谐 [8–11],非局域性一直是量子基础研究的核心。这是有原因的:由于多个实验证实了贝尔不等式的量子违反 [12–19],人们相信量子力学与经典力学有着根本的不同。这些研究带来了理论和技术突破 [20–28]。此外,甚至可以讨论时间中的纠缠 [29–33]。上述类型的非局域性与系统的制备(或制备和测量)有关。因此,它可以称为运动非局域性。使用模变量的概念引入的另一种非局域性[34]与量子系统遵循的运动方程有关,因此称为动态非局域性。尽管这些变量非常有前景,正如在连续系统量子信息的首次应用中已经证明的那样[35-38],但它们尚未得到社区相当一部分人的充分关注[39]。文献中考虑的最常见的模变量类型是模位置和模动量[35-48]。事实上,设ℓ和p0分别为长度和动量维数的参数,模算子
摘要:量子系统与环境之间不必要的相互作用会引起退相干,从而导致量子相干性的降低。具体来说,对于纠缠态,退相干会导致纠缠和贝尔非局域性的丧失,称为纠缠猝死(ESD)和贝尔非局域性猝死(BNSD)。本文,我们从理论上研究了在三种退相干、振幅衰减、相位衰减和退极化条件下二分纠缠态的纠缠和贝尔非局域性。我们的结果给出了不丧失纠缠和贝尔非局域性的退相干强度的界限。此外,我们发现两个有趣的特点。一是,如果一个纠缠量子比特受到除退极化之外足够小的退相干强度的影响,则即使另一个量子比特受到较大强度的退相干影响,纠缠仍可存活。第二个是,当特定形式的纠缠态处于振幅衰减状态时,贝尔非局域性会表现出与每个量子比特上的退相干强度不对称的行为。我们的工作为二分纠缠态提供了有关 ESD 和 BNSD 的全面信息,这将有助于在存在退相干的情况下实现量子信息处理。