进入21世纪后,随着世界电子信息的飞速发展,基于量子效应的量子通信技术得到了进一步发展。量子通信技术是基于量子力学理论与现代通信科学相结合的综合产物。量子通信具体是指利用量子纠缠效应进行信息传输的一种先进通信方式,是近二十年来逐渐发展起来的一门新兴的交叉学科,与传统通信方式相比,其主要优势是信息效率高、信噪比低、非局域性和安全性,是通信技术领域的研究方向和热点之一。对于量子通信的研究,许多国家都加大了人力和物力的投入,在理论研究和技术上取得了重大突破。
本研究深入探讨了量子力学算子在量子引力背景下的有效性,并认识到了对它们进行推广的潜在需求。主要目标是研究这些推广对量子力学中固有的非局域性的影响,例如贝尔不等式。此外,本研究还仔细研究了在已建立的贝尔不等式框架中引入非零最小长度的后果。这些发现对我们从理论上理解量子力学和引力之间错综复杂的相互作用做出了重要贡献。此外,本研究还探讨了量子引力对贝尔不等式的影响及其在量子技术中的实际应用,特别是在设备独立协议、量子密钥分发和量子随机性生成领域。
我们计划研究此类结构并实现一种高效自旋光子界面装置。这个具有挑战性的项目结合了先进的外延生长、纳米制造和量子光学实验。分子将嵌入二极管结构中,以允许在点之间施加电场,从而使两个点的能级产生共振,从而产生跨两个点的非局域化新电子态。自旋态将通过磁场下的光脉冲进行寻址和控制。然后可以设置原始实验,例如将一系列射频磁场脉冲调整到单重态-三重态自旋共振,从而驱动光学初始化的量子比特。
如果说物理哲学有一个核心问题,那就是量子测量问题:如何解释、理解甚至如何修复量子力学的问题。物理学中的其他理论挑战了我们的直觉和日常假设,但只有量子理论迫使我们认真对待这样一个观点:除了我们的观察之外,根本没有客观世界——或者,也许有很多。物理学中的其他理论让我们对如何理解它们的某些方面感到困惑,但只有量子理论引发了如此严重的悖论,以至于领先的物理学家和领先的物理哲学家认真考虑将其推翻并重新构建。量子理论既是 21 世纪物理学的概念核心,也是数学核心,也是我们试图理解 21 世纪物理学给我们的世界观的巨大空白。因此,毫不奇怪,量子力学的哲学主要由量子测量问题主导,在较小程度上由相关的量子非局域性问题主导,在本文中,我将对这两个问题进行介绍。在第 1 部分中,我回顾了量子力学的形式主义和量子测量问题。在第 2-4 部分中,我讨论了测量问题的三种主要解决方案:将形式主义视为代表系统的客观状态;将其视为仅代表其他事物的概率;修改它或完全替换它。在第 5 部分中,我回顾了贝尔不等式和量子力学中的非局域性问题,并将其与第 2-4 部分中讨论的解释联系起来。我在第 6 节中做了一些简短的总结性评论。术语说明:我交替使用“量子理论”和“量子力学”,以指代量子物理学的总体框架(包含简单到量子比特或谐振子,复杂到粒子物理学的标准模型的量子理论)。我不采用较旧的
如果说物理哲学有一个核心问题,那就是量子测量问题:如何解释、理解甚至如何修复量子力学的问题。物理学中的其他理论挑战了我们的直觉和日常假设,但只有量子理论迫使我们认真对待这样一个观点:除了我们的观察之外,根本没有客观世界——或者,也许有很多。物理学中的其他理论让我们对如何理解它们的某些方面感到困惑,但只有量子理论引发了如此严重的悖论,以至于领先的物理学家和领先的物理哲学家认真考虑将其推翻并重新构建。量子理论既是 21 世纪物理学的概念核心,也是数学核心,也是我们试图理解 21 世纪物理学给我们的世界观的巨大空白。因此,毫不奇怪,量子力学的哲学主要由量子测量问题主导,在较小程度上由相关的量子非局域性问题主导,在本文中,我将对这两个问题进行介绍。在第 1 部分中,我回顾了量子力学的形式主义和量子测量问题。在第 2-4 部分中,我讨论了测量问题的三类主要解决方案:将形式主义视为代表系统的客观状态;将其视为仅代表其他事物的概率;修改它或完全替换它。在第 5 部分中,我回顾了贝尔不等式和量子力学中的非局域性问题,并将其与第 2-4 部分中讨论的解释联系起来。我在第 6 节中做了一些简短的总结性评论。术语说明:我交替使用“量子理论”和“量子力学”,以指代量子物理学的总体框架(包含简单到量子比特或谐振子,复杂到粒子物理学的标准模型的量子理论)。我不采用较旧的
具有C 2 位对称性的[YO 6 ] 9 局域单元。17 Y 2 O 3 晶体在掺杂适当稀土离子后,由于其高热导率和低声子能量,可以作为良好的激光基质材料。18 近年来,Ho 3+ 掺杂的Y 2 O 3 (Y 2 O 3 :Ho)晶体作为一种很有前途的激光材料受到了广泛的研究。19 Laversenne 等人首次利用激光加热基座生长 (LHPG) 技术生长了Ho 3+ 掺杂的Y 2 O 3 单晶。20 此外,他们还特别分析了Y 2 O 3 :Ho的动态激光谐振特性。秦等人研究了Ho 3+掺杂的Y 2 O 3 在532 nm 连续波激光激发下的发光光谱。 21结果表明Ho3+离子在紫外和紫外区(306、390和428nm)有多个荧光跃迁,这些跃迁分别归属为3D3/5I8、5G4/5I8和5G5/5I8的跃迁。Wang等人报道了在2.1mm左右的Y2O3:Ho实现了高输出激光操作,具有低散射损耗和优异的光学质量。22他们的结果表明Ho3+掺杂的Y2O3体系作为激光增益介质在高功率和高效激光应用中展现出诱人的前景。尽管对Y2O3:Ho已经有大量研究报道,但还没有系统的研究来阐明其微观结构和电子特性。本文基于 CALYPSO(粒子群优化晶体结构分析)23 – 27 方法结合 DFT(密度泛函理论),对 Y 2 O 3 : Ho 进行了广泛的结构搜索,获得了基态结构。此外,我们计算并分析了能带结构、态密度和 ELF(电子局域化
用光照射纳米金属会驱动电荷载体(等离子体)的集体振荡和超出等离子体近场衍射极限的光局域化。等离子体的能量在几十飞秒内消散,要么通过光子辐射发射,要么通过电子-空穴激发,产生非平衡载流子分布。近年来,等离子体学的重点是等离子体能量收集。[1–3] 新兴的混合等离子体学领域旨在将金属纳米结构与其他材料(特别是半导体)连接起来,将等离子体转换为具有重大应用的电子激发。混合等离子体装置可用于光收集、光化学、光催化、光电探测器和单分子探测器。[2,4–7] 对于这些应用,辐射损耗是
摘要 本文研究了量子态可能具有的各种被认为特有的“量子”性质(纠缠、非局域性、可控性、负条件熵、非零量子不一致性、非零量子超不一致性以及语境性)及其对立面。本文还在以下意义上考虑了它们的“绝对”对应物:如果给定状态在任意幺正变换后仍然具有给定属性,则它绝对地具有该属性。总结了所列属性之间以及它们的绝对对应物之间的已知关系。证明了唯一绝对具有零量子不一致性的两量子比特状态是最大混合态。最后,讨论了有关“经典”和“量子”这两个术语的概念问题。
是ri 位置处的局域磁矩。经典的环面磁矩可以通过沿子午线在环面表面流动的电流实现[4],如图1a所示。此外,它通常也可以在具有独特轮状拓扑结构的单分子基化合物中观察到,[5]例如 Dy 6 轮子,[6,7] Dy 4 正方形,[8] 和 Dy 3 三角形,[9]分别如图 1b-d 所示。在晶体固体系统中,环面磁矩的自发环面化,即铁环序,由于其新颖的不对称性质和潜在的应用而受到越来越多的关注。 [2–5,10–15] 已经提出了几种铁环候选物,[3,15] 例如具有橄榄石结构的正磷酸盐 LiCoPO 4 [10] 和辉石结构类型的 LiFeSi 2 O 6 [16]。LiCoPO 4 是