先前的内部状态和环境的感觉输入。这个过程被称为35“分布式计算” [2,3],在大脑的背景下,被认为是认知和36个havior的基础。可以通过将“信息动力学”分为三部分37 [3]:信息存储(神经元的过去活动都会告知其未来的程度,例如LTP 38或LTD)[4],信息传输(来源神经元的过去的程度告诉目标神经元的39未来,例如突触通信)[5,6]和信息修改(即“非线性”计算40,其中神经元将不同的信息流集成到比零件总和更大的事物中)41 [7,8,9,10]。可以使用信息理论[11]进行正式化这三个动力学(请参阅秒1.1)。42先前使用信息理论研究记录的神经元网络中信息动态的先前工作43发现,在开发过程中修改信息变化的能力[10]以及在相同的发育44个窗口中,特定的信息传输模式“锁定” [12]。此外,45个信息修改的能力是在网络的神经元上分布的。集中在高46度,富俱乐部神经元中[13,14,15]。信息传输[16]已应用于各种神经和47个神经元记录(有关综合综述,请参见[5]),并允许研究人员估算有效的网络48相互作用的神经元模型。特定动态服务的目的仍然很困难。最后,主动信息存储为刺激响应49和视觉处理系统中的偏好提供了见解[4]。50尽管在这个领域进行了大量分析,但信息动态如何与行为相关的问题仍然不清楚,因为在神经文化中,许多上述工作都是在神经文化中进行的52,而不是与复杂环境相互作用的行为生物体相反。因此,提出了信息动态和行为之间的链接53(例如例如,尽管有很好的文献记录了协同信息动态,但仍不清楚它们在认知和行为相关的信息处理中扮演什么(如果有)角色,或者56仅仅是统计的Epiphenomena。为此,我们研究了信息动力学和由此产生的57个效率网络结构,同时记录了三个猕猴的额叶 - 顶端抓地力网络的最多三个皮质区域的神经种群。在录音过程中,猴子执行了59个延迟的感觉运动转换任务,涉及处理不同的视觉提示,制备和60个不同的掌握类型的记忆以及这些掌握类型的执行。(有关详细信息,请参见[17]。使用61这些数据,我们可以估计神经元级的活动信息存储,信息传输和协同62在不同的认知和行为状态中的信息修改,从而使我们能够直接评估信息动力学和复杂行为之间的相关性63个分离。68我们假设不同的行为状态和握把变化将与不同的69个信息动态模式相关。此外,通过推断传输熵64网络,我们可以应用网络科学[18,19]的技术来检查行为的变化如何改变65网络中神经元之间的有效连通性模式。最后,我们可以结合这两条66行分析,以探索神经元如何在网络夫妇中定位特定任务以揭示67个单个神经元在信息处理中的局部作用。特别地,我们假设需要高70度的主动处理的行为状态(例如与其他状态相比,识别行为提示,准备和执行动作)71将显示更复杂的活动和独特的网络结构(例如期望72固定)。我们的发现与这些假设是一致的:不同的行为状态与全球效果网络结构的明显相关性相关联73相关联,尤其是74的运动与系统的总体信息增加,并且在系统中增加了75个信息,并在协同信息处理的量中增加了75。对于两种不同的握把类型的每一种,这些网络范围的活动模式都是不同的76,并且可以根据77