局域性无疑是量子理论和广义相对论不可分割的一部分。另一方面,像 AdS/CFT 这样的全息理论意味着,在边界理论中,体量子引力自由度被编码在空间无穷远处。尽管这种说法是在非微扰层面上的说法,但在量子引力的微扰极限中,这种性质仍然存在。这主要是由于引力高斯定律,它使我们无法定义严格的局部算子。由于在描述中包含引力要求理论在坐标变换下不变,因此物理算子需要是微分同胚不变的。高斯定律实现的这一条件要求算子被修饰到边界,并包含一个延伸到无穷远处的引力版本的威尔逊线,因此要求它们是非局部的。为了解决这一矛盾,我们提出了候选算子,它们可以绕过这一要求,同时在 AdS/CFT 环境中具有局部和微分同胚不变性。这些算子仍然满足引力高斯定律的一个版本,因为它们被解释为相对于状态的特征进行修饰。因此,这些算子所定义的状态是破坏理论对称性并具有“特征”的状态。这些状态通常是具有大方差的高能状态,对应于块体中非平凡的半经典几何。该提议还将有助于解决有关岛屿提议的悖论。此外,这使得人们能够在微扰量子引力中更具体地讨论子区域、其相关子系统和信息局部化。在第二部分中,我们将主要关注称为 AdS-Rindler 楔形的块体子区域。我们将使用从量子信息和量子计算界借用而来的 Petz 映射,从其边界对偶子区域明确地重建该体子区域。这与先前关于体子区域重建的猜想以及由于引力的量子误差校正性质,Petz 映射可用于重建纠缠楔的提议相一致。此外,我们精确研究了 AdS Rindler 楔中的算子代数,包括体和边界对偶。使用交叉积构造和一种新的重正化 Ryu Takayanagi 表面的方法,我们展示了如何通过包括引力校正将代数修改为更易于管理的代数,我们可以在其中定义密度矩阵和冯诺依曼熵。最后,在存在引力相互作用的情况下,我们研究了一般背景下算子代数的一种特殊表示,称为协变表示。这种表示将从物理角度阐明交叉乘积构造的含义。
人们齐心协力,设计出实现此类非互易散射装置的方法,而无需使用磁性材料或磁场,而是使用外部驱动(即时间调制)。有几篇优秀的评论讨论了经典系统中的这些方法(例如见[1、2])。与此同时,人们对理解系统的独特性质的理论兴趣也日益浓厚,这些系统的内部动力学由有效非厄米哈密顿量所支配,这些哈密顿量编码了非互易相互作用。典型的例子包括非厄米晶格模型,其中存在不对称性,例如从左到右跳跃的振幅与从右到左跳跃的振幅[3]。这样的系统表现出许多不寻常的性质,例如非厄米趋肤效应,其中边界条件从周期性变为开放会完全改变哈密顿量的谱,并局部化所有特征向量[4-6]。它们还可以表现出独特的拓扑能带结构 [7,8],甚至可以产生新颖的相变物理 [9]。该领域的大多数工作都假设定向相互作用的存在作为建立模型的起点,而不必担心微观机制。在量子领域,这可能会有问题,因为它通常相当于对开放量子系统的不完整描述(其中包括广义阻尼效应,而不考虑随之而来的相应量子涨落)[10]。在这些笔记中,我们(希望)以完全符合量子力学的方式,通过外部驱动在微观上实现非互易相互作用的方法提供了教学介绍。使用一个极其简单的三点玻色子环模型,我们明确展示了非互易散射(隔离器或循环器所需要的)如何直接与环内的非互易传播相关联,如有效非厄米哈密顿量所述。我们以一种包含所有相关量子噪声效应的方式来做到这一点。这个简单的例子强调了一个普遍原则:实现非互易相互作用既需要打破时间反转对称性(因为存在非平凡的合成规范场),也需要耗散。然后,我们使用这个玩具模型来推导一个量子主方程,该方程编码环内的非互易隧穿。这明确展示了非互易性是如何通过平衡相干哈密顿相互作用与相应类型的耗散相互作用(由非局部耦合到系统自由度的耗散库介导)而出现的。通过这个例子,我们表明这个量子主方程的基本结构可用于使两个系统之间的任何起始哈密顿相互作用完全非互易。我们将其与级联量子系统理论(其中非互易相互作用通过耦合到外部单向波导然后积分出来产生)和测量加前馈协议的量子描述(由于信息的单向流动,它们本质上是非互易的)联系起来。因此,我们的工作为参考文献 [ 11 ] 和 [ 12 ] 中介绍的产生非互易量子相互作用的基本方法提供了教学介绍。它以多种方式补充了那里的分析(例如,通过讨论与非厄米汉密尔顿量的具体联系,并通过评论非厄米相互作用产生纠缠的能力)。
29] 及其中的参考文献)。在演化过程中,薄膜/蒸汽界面可能会发生复杂的拓扑变化,如夹断、分裂和增厚,这些变化都给该界面演化的模拟带来了很大困难。[1] 提出了一种相场模型,该模型可以自然地捕捉形态演化过程中发生的拓扑变化,并且可以轻松扩展到高维空间,其中采用了稳定化方案的谱方法。相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 φ(相场函数)来局部化相并用一层小厚度来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,界面上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。结果,导出的系统满足能量耗散定律,证明了其热力学一致性,并得到了一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场方法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。从数值角度来看,对于相场模型,数值近似中的一个主要挑战是如何设计无条件的能量稳定方案,使半离散和全离散形式下的能量都保持耗散。能量耗散定律的保持尤为重要,对于排除非物理数值解至关重要。事实上,已经观察到不遵守能量耗散定律的数值格式可能导致较大的数值误差,特别是对于长时间模拟,因此特别需要设计在离散级别保持能量耗散定律的数值格式。开发用于近似相场模型的数值格式的另一个重点是构建高阶时间推进格式。在一定精度的要求下,当我们想要使用更大的时间推进步骤来实现长时间模拟时,高阶时间推进格式通常比低阶时间推进格式更可取。这一事实促使我们开发更精确的格式。此外,不言而喻,线性数值格式比非线性数值格式更有效,因为非线性格式的求解成本很高。在本文中,我们研究了基于 SAV 方法的线性一阶和二阶时间精确、唯一可解且无条件能量稳定的数值格式,用于解决固态脱湿问题相场模型,该 SAV 方法适用于一大类梯度流 [15, 16]。引入辅助变量的梯度流格式首次在 [23,24] 中提出,称为不变能量二次化 (IEQ) 方法,其中辅助变量是一个函数。SAV 方法的基本思想是将梯度流的总自由能 E (φ) 分为两部分,写为
目标本文档旨在作为对英国移植专业人员的实体器官移植(SOT)中人类疱疹病毒8(HHV-8)生物学生物学的简明更新。为已故捐助者引入HHV-8筛查计划已经在社区内有必要为专家意见告知的临床医生提供共识文件,同时承认没有足够的证据来制定准则。这是一项共识的陈述,旨在补充但不取代本地和地区专家临床建议。人类疱疹病毒8(HHV-8)HHV-8是一种大型的双链DNA病毒,在1994年在卡波西肉瘤中被发现为病因(1)。像其他疱疹病毒一样,HHV-8经历裂解和潜在阶段,建立了终身感染,即一旦建立了感染,它就会生命。在裂解阶段,宿主细胞的复制和裂解大大增加。激活病毒编码的“裂解开关”基因RTA导致HHV-8进入裂解阶段,其中表达了病毒编码的基因(至少85个基因和miRNA),并将宿主细胞机械重新定向到后代病毒体的制造和组装。裂解相促进了新细胞的感染和新宿主的向前感染。HHV-8被认为主要感染内皮细胞,单核细胞和B淋巴细胞。大多数非SOT传播被认为是通过唾液发生的,但是在SOT接受者中,与同种异体相关的传播被认为主要是由乘客单核细胞发生的(2)。移植后,HHV -8血清转化具有这解释了肝,肺和小肠移植受者的血清转化率明显更高。正如疱疹病毒感染中所预期的,实验和临床数据表明,T淋巴细胞的宿主免疫对于HHV-8的控制和调节很重要。尽管HHV-8对于引起某些恶性肿瘤是必要的,但也必须有其他共同因素,因为在非免疫抑制个体中很少有临床疾病。流行病学HHV-8血清阳性(抗体阳性)通常表明先前获得了病毒的感染和运输,通常是无症状的。在健康无症状个体的血浆或血清中病毒DNA的检测并不常见,因为HHV-8与细胞相关。血浆中HHV-8 DNA的检测与病毒复制状态有关,病毒载量与疾病表现水平之间存在相关性。然而,在没有可检测的病毒血症的情况下,可能会发生疾病(例如局部化的kaposi的肉瘤)。与其他疱疹病毒不同,HHV-8血清阳性在全球范围内差异很大。HHV-8的血清阳性接近撒哈拉以南非洲的50%,意大利南部的血清阳性接近约25%。非流行地区,例如美国(美国)和西欧报告,普通人群的血清阳性率为0至6%。在某些亚组中观察到较高的血清阳性,例如与男性发生性关系的男性(MSM)和静脉吸毒者(3);这些是非流行地区传播的重要途径。在美国,估计有3-7%的献血者是血清阳性的,但检测到HHV -8 DNA的速率最低(未测试的684个供体)(4)。
量子混沌是十分重要的。它是孤立多体量子系统热化机制和本征态热化假设 (ETH) 有效性的基础[1-3],它解释了驱动系统的加热[4,5],它是多体局部化的主要障碍[6-9],它抑制了多体量子系统的长时间模拟[10],它可能导致量子信息的快速扰乱[11],并且它是可以观察到量子疤痕现象的区域[12-14]。对于具有适当半经典极限的系统,量子混沌是指在量子域中发现的特定属性,此时相应的经典系统在混合、对初始条件的敏感性和正的 Lyapunov 指数意义上是混沌的。对于自由度较少的系统(如台球和被踢转子),这种对应关系已经很明确,然而对于我们感兴趣的具有许多相互作用粒子的系统,由于半经典分析的挑战,这种对应关系仍然缺乏 [15]。因此,通常的方法是,如果一个给定系统显示出与全随机矩阵集合中发现的特征相似的相关特征值和特征态分量,则将其表示为混沌 [16-19]。最近对多体系统中量子混沌的研究大多针对有限密度的粒子进行,但出现了两个问题:量子混沌也能在零密度极限下发生吗?如果是这样,需要多少个相互作用的粒子才能使量子系统进入强混沌状态?这些问题对于冷原子和离子阱实验尤其重要,因为在这些实验中可以控制系统的粒子数量和大小。在参考文献中。 [20],通过逐步增加冷原子的数量,实验表明只需 4 个粒子即可形成费米海。仅使用四个相互作用的粒子也得到了量子混沌 [18] 和具有费米-狄拉克分布 [21-25] 的热化。最近,在含有 5 个粒子的系统中研究了热化 [26],并在仅含有 4 个粒子的系统中再次验证了量子混沌 [27-30],甚至可能在只有 3 个相互作用粒子的系统中 [31]。然而,目前尚不完全清楚其他混沌指标是否表现出类似的行为,以及是否可以通过引入长程相互作用来改变所获得的 4 个相互作用粒子的阈值。这些都是我们在本文中考虑的问题。我们重点研究自旋 1/2 链,其激发数 N 较少,幂律相互作用随自旋之间的距离衰减。这些系统类似于硬核玻色子或无自旋费米子的系统,因此这些情况下的粒子数对应于我们模型中的自旋激发 1 。我们发现,在具有短程耦合的系统中,当 N ≳ 4 时,无论系统规模有多大,都会出现强混沌。虽然大型链会改善统计数据,但不会改变我们的结果。我们表明,长程相互作用可促进向混沌的转变,并将阈值降低到仅 3 个激发,使得只有 3 个相互作用粒子的系统表现出与稠密极限下的大型相互作用系统类似的混沌特性。这对于离子阱实验尤其有意义,因为其中可以控制相互作用的范围 [ 32 , 33 ] ,以及探索长程相互作用系统的 Lieb-Robinson 界限的推广的研究 [ 32 – 35 ] 。