获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:脑电图 (EEG) 数据通常会受到伪影的影响。检测和去除坏通道(即信噪比较差的通道)是至关重要的初始步骤。由于数据质量、伪影性质和所采用的实验范式存在内在差异,从不同人群获取的 EEG 数据需要不同的清理策略。为了处理这些差异,我们提出了一种基于局部离群因子 (LOF) 算法的稳健 EEG 坏通道检测方法。与大多数现有的寻找通道全局分布的坏通道检测算法不同,LOF 相对于通道的局部集群来识别坏通道,这使其适用于任何类型的 EEG。为了测试所提算法的性能和多功能性,我们在从三个人群(新生儿、婴儿和成人)获取的 EEG 上进行了验证,并使用了两个实验范式(事件相关和频率标记)。我们发现,在校准其主要超参数(LOF 阈值)后,LOF 可应用于所有类型的 EEG 数据。我们利用现有的最先进 (SoA) 坏通道检测方法对该方法的性能进行了基准测试。我们发现,LOF 通过将 F1 分数(我们选择的性能指标)提高到新生儿和婴儿的约 40%,将成人的 F1 分数提高到 87.5%,从而超越了所有方法。