图2基线LVMI对脑形态变化的直接影响。加权线性回归的结果(大脑体积,皮层灰质体积,白质体积,白质超强度量,全球皮质厚度,皮质脑厚度,皮层脑时代,皮层脑年龄和脑年龄)的基线LVMI的调整,并调整了对局部性的基线值的调整。对社会人口统计学变量,人体测量变量,生活方式因素和后续时间的基线值进行调整(模型1)。此外,我们针对心血管危险因素进行了调整,并摄入了降压和脂质降低药物(模型2)。通过包括E / E 0比率,E / A比和左心房大小指数(模型3),研究了通过舒张功能进行的调解。e / a - 舒张期早期和晚期流入速度的比率。e / e 0 - 舒张期早期二尖瓣流入速度和早期二尖瓣环速度的比率。lvmi,左心室质量指数。
我们考虑在外部磁场下与旋转轨道耦合的相位偏置的约瑟夫森连接,并研究了在Majorana结合状态的存在下Josephson二极管效应的出现。我们表明,具有沿旋转轨道轴具有Zeeman场的中间区域的连接形成了低能量的Andreev频谱,与超导相位差异φ=π相对于超导相位差不对称,这在拓扑相中受到Majorana Bound态在拓扑相的强烈影响。这种不对称的Andreev频谱产生了异常的电流曲线和临界电流,这些曲线和临界电流在正和负超潮流中不同,因此信号表明了约瑟夫森二极管效应的出现。即使在微不足道的阶段也存在这种效果,但由于主要结合状态的空间非局部性,它在拓扑阶段得到了增强。因此,我们的论文建立了拓扑超导的利用来增强约瑟夫森二极管的功能。
几何局部性是影响代码性能和物理实现难易程度的量子低密度奇偶校验 (qLDPC) 码的重要理论和实践因素。对于仅限于二维 (2D) 局部门的设备架构,单纯地实现适用于低开销容错量子计算的高速率代码会产生过高的开销。在这项工作中,我们提出了一种基于双层架构的纠错协议,旨在通过以低于其他生成器的频率测量某些生成器来减少仅限于 2D 局部门时的操作开销。我们研究了双变量双循环 qLDPC 码系列,并表明它们非常适合使用快速路由和局部操作和经典通信 (LOCC) 的并行综合征测量方案。通过电路级模拟,我们发现在某些参数范围内,使用此协议实现的双变量双循环码具有与表面码相当的逻辑错误率,同时使用更少的物理量子位。
我们研究了在有限的子系统上支撑的量子状态的普遍,均匀分布的出现,该量子状态通过投射介绍系统的其余部分而引起的。被称为深度热化,这种现象代表了比常规热化更强的量子多体系统中平衡的形式,这仅限于可观察到的一体组成的阀门。虽然在一个维度中存在量子电路模型,在该模型中可以证明这种现象可以准确地出现,但这些现象是特殊的,因为深层的热化是在与常规热化的完全相同的时间发生。在这里,我们提出了一个完全可溶解的混乱动态模型,其中可以证明这两个过程在不同的时间尺度上发生。该模型由一个有限的子系统组成,该子系统通过较小的收缩结合到有限的随机基质浴场,并突出显示了局部性和不完善的热化在约束这种通用波函数分布的形成中的作用。我们测试了针对精确数值模拟的分析预测,从而确定了出色的一致性。
在本文中突出显示了通过板,楔形点和停滞点,通过多孔培养基通过多孔培养基,含有陀螺仪微生物的MHD非牛顿纳米流体的两维稳定流的数值干预措施在本文中突出显示。主要是针对三种不同的在板,韦奇和滞留点的不同几何条件的边界条件的小子数,生物对象,布朗感染,嗜热和热发电的影响,以巩固热和纳米流体浓度保守的保守方程。通过考虑各种相关参数的影响,即热循环,布朗运动,prandtl数量,热量产生,化学反应,化学反应,生物对流和磁性对象,以图形方式分析成果,用于动量,温度,温度,温度,纳米颗粒体积分数以及Motile Microorgariss的密度和局部构成的局部性以及静止效果。相关性变换用于获得普通微分方程的系统,并通过基于射击技术通过MATLAB使用BVP4C来求解方程。
使用量子自由度来存储和提取能量是利用能源科学中的量子效应的一种有前途的方法。早期的实验已经证明了它有潜力超越现有技术的充电功率。在这种情况下,确定可以利用的特定量子效应来设计最高效的量子电池并将其性能推向极限至关重要。虽然纠缠通常被认为是增强充电(或放电)功率的关键因素,但我们的研究结果表明它并不像以前想象的那么重要。相反,三个参数在确定瞬时充电功率的上限时显得最为重要:电池和充电器汉密尔顿算子的局部性,以及电池单个单元中可存储的最大能量。为了推导出这个新的界限,我们还解决了文献中先前提到但缺乏解释的几个悬而未决的问题。这个界限为设计最强大的充电器-电池系统奠定了基础,其中两个组件的组合优化提供了仅通过操纵其中一个无法实现的增强。
双缝实验在经典和量子理论之间提供了明显的界限,而多缝实验划定量子和高阶干扰理论。在这项工作中,我们表明这些实验与更广泛的过程有关,这些过程可以作为信息处理任务进行表述,从而在经典,量子和高阶理论之间进行了明确的削减。任务涉及两个政党和他们之间的交流,目的是赢得某些平等游戏。我们表明,干涉的顺序与这些游戏的奇偶校验顺序一对一。此外,我们证明了在经典和量子the-Ory中系统组成下的干扰顺序。后一个结果可以用作量子设置中粒子数量的(半)设备的独立见证。最后,我们将游戏形式扩展到广义的概率框架内,并证明层析成像局部性意味着组成下干涉顺序的附加性。这些结果阐明了干扰顺序的操作含义,对于识别量子理论二阶干扰背后的信息理论原理可能很重要。
摘要。我与约翰·贝尔(John Bell)讨论了关于量子力学中现实的讨论。我想向读者介绍贝尔对现实的愿景,这对他来说是科学家的自然地位。贝尔对“量子跳跃”有着强烈的厌恶,并坚持在措辞中清楚地说,他的“被禁止的话”以严肃而机智宣称的“被禁止的话” - 都是典型的铃铛特征 - 变得传奇。我将总结贝尔型实验以及自然的反应,并讨论因贝尔的工作而引起的物理数量,实际实体和非局部性概念的含义。随后,我还解释了量子状态含义的相当不同的看法,这是信息理论方法,重点是布鲁克纳和Zeilinger的工作。最后,我想将现实讨论与“源”的概念与量子场理论中发生的虚拟粒子的含义进行扩展和对比。有了我自己的一些想法,我将结论一下论文,而不是哲学上的文章而不是历史文章。
在 D 维格子上距离 r 中的 α ≤ D — 近年来引起了人们的极大兴趣。它们存在于量子计算和模拟的主要实验平台中,以及量子信息加扰和快速纠缠产生的理论模型中。由于此类系统不具备局部性概念,因此人们对其动态特性缺乏一般性的了解。为了解决这个问题,我们证明了两个新的 Lieb-Robinson 型界限,它们限制了强远程相互作用系统中信号发送和加扰的时间,此前尚无此类系统的严格界限。我们的第一个界限适用于可映射到具有远程跳跃的自由粒子汉密尔顿量的系统,并且对于 α ≤ D/ 2 是可饱和的。我们的第二个界限适用于一般的远程相互作用自旋汉密尔顿量,并给出了对所有 α < D 的系统广泛子集的信号发送时间的严格下限。这种多站点信号传输时间限制了强远程相互作用系统中的加扰时间。
摘要 - 由于其高电流携带能力和单位长度高电阻,使用稀土bacuo(Rebco)涂层con污染器非常适合电阻型SFCL(超导故障电流限制器)。然而,如果在临界电流范围内的断层电流范围内,耗散可能会沿着整个长度高度不均匀,从而导致正常区域的局部性温度升高。这种所谓的热点制度是通过模拟工具很好地预测的,但很少以非破坏性的方式进行体验研究。本文提出了两个体验结果,强调了热点制度的存在。首先,通过高速记录与电动测量同步的氮气气泡,可以观察到Rebco胶带上的局部耗散。第二,通过对欧洲项目FastGrid开发的导体进行的测量,研究了限制结束时的最高温度作为前瞻性电流的函数。最高温度在接近coductor𝑰𝒄𝒄的接近的前瞻性电流中被发现最高。