背景:肾细胞癌(RCC)是一种侵略性恶性疾病,经常向脊柱转移。我们研究的主要目的是评估手术的影响以及靶向疗法对脊柱RCC转移患者存活的影响。方法:回顾性队列研究。我们确定了100例脊髓RCC转移酶的患者,他们对术前,治疗和存活进行了回顾性审查。转移切除术,61例患者进行了减压手术。只有26例患者进行辅助治疗(7例转移切除术,19例姑息治疗)。疼痛,神经系统状况,生存时间(从手术到死亡或最后一次随访)以及无局部的无局部生存。结果:观察到神经功能恢复和报告明显缓解疼痛。转移切除术和姑息性减压患者的总生存期没有显着差异(p¼.750)。转移切除术提供了更好的局部疾病控制(p¼.043)。接受有针对性治疗的患者的总生存率在统计学上存在显着差异(p¼.012)。结论:转移切除术对肿瘤的局部控制有效。靶向治疗可能会延长脊柱RCC转移患者的总体存活率。证据级别:3。临床相关性:我们的发现表明,脊柱转移切除术对局部控制肿瘤生长有用,但对现场预期无用。有效的全身治疗是停止疾病进展的关键作用。
背景:肾细胞癌(RCC)是一种侵略性恶性疾病,经常向脊柱转移。我们研究的主要目的是评估手术的影响以及靶向疗法对脊柱RCC转移患者存活的影响。方法:回顾性队列研究。我们确定了100例脊髓RCC转移酶的患者,他们对术前,治疗和存活进行了回顾性审查。转移切除术,61例患者进行了减压手术。只有26例患者进行辅助治疗(7例转移切除术,19例姑息治疗)。疼痛,神经系统状况,生存时间(从手术到死亡或最后一次随访)以及无局部的无局部生存。结果:观察到神经功能恢复和报告明显缓解疼痛。转移切除术和姑息性减压患者的总生存期没有显着差异(p¼.750)。转移切除术提供了更好的局部疾病控制(p¼.043)。接受有针对性治疗的患者的总生存率在统计学上存在显着差异(p¼.012)。结论:转移切除术对肿瘤的局部控制有效。靶向治疗可能会延长脊柱RCC转移患者的总体存活率。证据级别:3。临床相关性:我们的发现表明,脊柱转移切除术对局部控制肿瘤生长有用,但对现场预期无用。有效的全身治疗是停止疾病进展的关键作用。
直肠癌是直肠中的恶性病变,位于腹膜上边界的s骨海角水平的假想线之间。大肠癌(CRC)以更广泛的术语解释了全球癌症相关的发病率和死亡率的重要部分。根据全球癌症天文台(Globocan)2020数字,大肠癌在发病率方面排名第三,在癌症相关死亡率方面排名第二,仅直肠癌仅占病例的三分之一[1,2]。直肠癌的管理在过去几十年中经历了明显的进化。这会改善CRC的发病率和死亡率[3]。治疗目标仅仅是为了实现局部控制并预防遥远的转移,从而确保患者的整体生活质量。
接受放射外科手术或转移瘤切除术治疗后,将 WBRT 添加到治疗方案中已降低了颅内复发和神经系统死亡率。患者添加 WBRT 的主要问题是神经认知功能衰竭。然而,功能独立性和平均生存期并未改善(17)。Chang 等人报告称,与单独进行放射外科手术相比,放射外科手术和 WBRT 降低了学习和记忆功能(7)。而 Tsao 等人报告称,与单独进行放射外科手术相比,放射外科手术和 WBRT 改善了局部和远端 BM 的控制(40)。伽玛刀 (GK) 放射外科手术的好处是减少对周围正常脑实质的辐射,因此与 WBRT 相比可以降低神经毒性(4,33)或与 WBRT 联合使用可以改善局部控制(1)。
超导体是具有零电阻率的材料,并且具有驱逐称为Meissner效应的磁场的能力。他们的无耗散反应对杂志悬浮和量子干扰装置等电路至关重要。在这里,我们使用超导磁性磁性来塑造控制自旋波的传输的磁性环境 - 磁铁有希望的芯片信号载体中的旋转激发 - 在薄膜磁铁中。使用基于钻石的磁成像,我们观察到具有强烈变化的温度低调波长的杂交旋转波 - 硅流电流模式。我们从波长偏移中提取依赖温度的伦敦穿透深度,并使用聚焦激光器实现对自旋波折射的局部控制。我们的结果证明了超导体操纵自旋波传输的多功能性,并在自旋波光栅,滤纸,crys骨和腔体中具有潜在的应用。
混合动力系统无处不在,因为实际机器人应用通常涉及连续状态和离散切换。安全是混合机器人系统的主要问题。措施至关重要的安全控制方法在计算上效率低下,对系统性能有害或限于小型系统。为了修改这些缺点,在本文中,我们提出了一种支持学习的方法来构建局部控制障碍功能(CBF),以确保广泛的非线性混合动力学系统的安全性。最终结果是一个安全的基于神经CBF的开关控制器。我们的方法在计算上是有效的,对任何参考控制器的侵入率最低,并且适用于大型系统。我们通过两个机器人示例来评估我们的框架,并通过两个基于CBF的方法和模型预测性控制来证明其效果和灵活性。关键字:混合系统,安全性,控制障碍功能
约 40% 的肺癌病例在治疗过程中出现脑转移 (BM) (1)。此外,患有 BM 的肺腺鳞癌 (ASC) 患者的中位生存期仅为 4 个月 (2)。随着放射技术的进步,毒性逐渐降低,用于预防和治疗 BM 的放射治疗持续受到关注 (3)。立体定向放射治疗 (SRT) 在过去的半个世纪中取得了进展,其观点逐渐转变,挑战了 BM 的常规全脑放射治疗 (WBRT) 实践 (4)。SRT 包括常规单次分割立体定向放射外科 (SF-SRS) 和低分割立体定向放射治疗 (HSRT) (5)。重复 SRT 可确保较高的局部控制 (LC) 率,尽管存在放射性坏死 (RN) (6) 的风险,这种风险通常是继发于神经认知缺陷和降低
近年来,各种医疗设备类型都可以使用各种钛3D打印应用程序(1)。在肌肉骨骼肿瘤学领域,3D打印技术的改进允许创建定制植入物来处理复杂的重建。该主题与计算机辅助手术(CAS)密切相关,以及从术前成像研究中得出的数据,以改善临床和手术结果,例如骨切割的准确性(2、3、4、5)。在肿瘤学环境中手术的第一个目标是局部控制,同时完全切除了肿瘤(6)。但是,很明显,骨科外科医生必须首先考虑患者根据正确的组织病理学诊断可以接受的局部和全身辅助治疗。肢体挽救和内主人的替代手术如今已在所有原发性恶性骨肿瘤患者中使用90-95%,而不会损害肿瘤学结果(7、8、9)。假体重建可以分为两组。
量子比特之间的纠缠2,在互联网规模的长距离上,是许多量子协议的关键,包括量子密钥分发、量子投票等,以及量子门的非局部控制。人们一直在努力建造量子计算机,是否有一种模式成为建造这种量子计算机的主导或最佳方式,还有待观察。与此同时,即使研究人员开发出更强大的量子计算机(支持更多量子比特进行操作,错误率更低),也有机会将来自不同站点的多台量子计算机连接起来,实现更复杂的量子计算,即将不同站点的多台量子计算机互连,使用分布式量子计算机系统(或不同节点的量子处理单元(QPU))执行分布式计算,从而实现分布式量子计算的概念,例如[3]。虽然分布式量子计算可以涉及彼此相邻或位于同一站点的多个QPU,但借助量子互联网,人们可以设想分布式量子