假定威胁量子计算的噪声过程是局部的,这意味着它们在电路的特定部分(例如个体物理Qubits)上作用。在QEC的“扩展”方法中,量子信息被编码为多个物理量子,这些量子构成了用于实际计算任务的每个逻辑量子。因此,即使一个物理量子被噪声破坏了,逻辑量子携带的信息也不会损坏。在QEC的“异国状态”方法中,每个计算单元是一个单个振荡器,逻辑位由振荡器的两个特殊状态(称为非平凡状态)表示,这些状态可与局部噪声抗衡。外来状态技术采用连续变量的系统,例如电磁模式,这些系统是在自身稳健(被动QEC)的状态下初始化的,或者可以通过不影响逻辑值(Active QEC)的操作来稳定。
通过连续体(BICS)中的结合状态构建高度局部的波场,可促进增强的波浪互动,并为高灵敏设备提供方法。弹性波可以携带复杂的极化,因此与BIC形成中的电磁波和其他标量机械波的不同,尚未充分探索和利用。在这里,我们报告了对羔羊波导侧支支撑的局部共振模式的研究,该模式由两对共振支柱支撑,并显示了两组具有不同极化或对称性的弹性BIC的出现。,两组BIC对外部扰动表现出明显的反应,基于该反应,提出了具有增强敏感性的无标签感应方案。我们的研究揭示了弹性介质中复杂的波动力学引起的BIC的丰富特性,并证明了它们在传感和检测中的独特功能。
摘要生成随机数对于许多现实世界应用很重要,包括密码学,统计抽样和蒙特卡洛模拟。受测量的量子系统通过Born的规则产生随机结果,因此自然研究使用此类系统以生成高质量的随机数的可能性是很自然的。但是,当前的量子设备会受到错误和噪声的约束,这可能会使输出位偏离Uni-Form分布。在这项工作中,我们提出和分析两个方案,可用于增加带有Hadamard Gate的电路和嘈杂的量子计算机中的测量值时获得的位置的均匀性。这些协议可以在其他标准过程之前使用,例如随机性扩增。我们对量子模拟器和实际量子计算机进行实验,获得的结果表明,这些方案对于提高生成的局部的概率很有用,使其通过统计测试进行均匀性。
工程蛋白质有可能解决生物医学、能源和材料科学中的许多问题,但在实践中创造出成功的设计却很困难。这一挑战的一个重要方面是蛋白质序列和三维结构之间的复杂耦合,而找到一种可行设计的任务通常被称为逆蛋白质折叠问题。在这项工作中,我们引入了一种基于图形表示的给定三维结构的蛋白质序列条件生成模型。我们的方法通过关注那些在序列中是长距离但在三维空间中是局部的蛋白质,有效地捕捉蛋白质中复杂的依赖关系。这种基于图的方法在速度和可靠性方面都比传统和其他基于神经网络的方法有所提高,并借助深度生成模型向快速和有针对性的生物分子设计迈出了一步。
我们研究在具有私人监控和通信的不断发展的社交网络上的合作。对于任意网络,我们构建了一类多边补偿均衡,在所有受支持的链接(即所有三角形的链接)上实现高度合作。这些均衡既是稳健的(在平衡路径上和平衡路径外保持无辜参与者之间的高度合作),又是局部的(不受参与者对其本地社区之外的网络信念的影响)。有罪的玩家不会被排斥;相反,他们继续参与以维持网络合作,同时通过为无辜的伙伴付出巨大努力来支付补偿。当新玩家到来时,他们会策略性地形成链接,这些链接总体上会导致现实的“小世界”网络属性,包括高支持但相对较低的聚类性。
19 世纪中叶以来,由于通讯成本几乎消失,距离和位置是否从经济生活中消失了?为什么许多国家存在持久而巨大的地区差异?为什么企业会设在劳动力和土地昂贵的地区?建设区域间交通基础设施有助于减少空间不平等吗?为什么城市存在,为什么它们的大小不同?为什么大城市的工人工资更高,住房更贵?不同城市的工人是否按技能分类?道路收费是解决交通拥堵的理想工具吗?我们讨论了各种方法,从经典区位理论到定量空间模型。空间经济学既是经济学的核心,也是经济学的边缘。它的核心在于经济增长一直是、现在仍然是地理上局部的和不均衡的,而经济史学家则令人信服地指出,城市在经济增长中发挥了根本性作用。
- 几何和波光学原理的介绍和概述:基本方程式和概念,包括光腔,极化,相干,激光束,差异和干扰。- 光的传播:罕见且密集的培养基,Huygens和Fermat的原理,光速,折射率,菲涅尔方程。- 傅立叶系列和傅立叶积分:连贯性,相关性和卷积的概念。傅立叶转化光谱以及对FTIR和相关振动光谱的应用。- 材料的表征:传播和反射,椭圆法,吸收,光致发光和阴极发光。- 光子学和纳米镜的介绍:光学领域的evaneScent Fimfiend和optical findice,表面等离子体,光触角的传播和聚焦。- 现代纳米光子设备的选定应用(例如,利用接近局部的光学技术,等离激光激光器,用于生物传感应用的表面等离子体)。
这项工作是由美国日本 - 美国工程专长局局部的国家可再生能源实验室撰写的,该实验室由Conterian-America Energy of Enceration of Contrenting Engriper of Contrent of Contrent of Contrent of Contrent No./div>DE-AC36-08GO28308。由美国能源部能源效率办公室和日本能源风能技术办公室可再生的资金提供的资金。本文中表达的观点不一定代表美国能源部或美国政府的观点。2023年7月17日至203日,美国政府保留和出版商,接受该文章的出版物,承认美国政府保留了非判定性的,NREL/PO-6A20-86358支付的,不可撤销的,全球范围内的许可,以供美国政府发表或允许其他人出版或允许其发表或允许其他人来供其他人使用。
图 1:对特定特征维度的注意力如何塑造神经特征维度图?A. 优先级图理论假设各种“特征维度图”用于根据其首选特征维度内的计算来索引视野中最重要的位置,并且这些图中的激活应根据观察者的目标进行缩放。如果正在进行的任务需要检测或辨别运动(例如,识别飞镖蜂鸟的运动方向),则相应“运动图”内的激活将增加与蜂鸟位置相关的重要性。运动图可以通过两种方式优先考虑超出空间注意力预期的局部效应的信息(例如,Sprague 等人,2018 年)。可以发生局部增强,这样只有具有关注特征的刺激的位置才会被优先考虑。或者,可以发生全局增强,这样整个地图上的激活被附加缩放,从而增加对任何位置关注特征维度的敏感度。这种类型的调制仍会驱动更强的目标表征,但当运动是目标相关特征维度时,还会在没有刺激的位置导致更强的反应。这里描绘了运动维度图,但调制同样适用于其他特征维度,例如颜色。B. 评估特征(运动)图中刺激位置和相反位置的激活可以区分局部和全局增强解释。两种模型都预测,当首选特征维度相关(例如运动;左)时,刺激将在刺激位置具有最大的激活。如果增强是局部的,那么相反位置的激活不应该在各种条件下改变(中间)。但是,如果存在全局增强,那么当运动与任务相关时,相反位置的激活应该增加。通过计算刺激和相反位置之间的激活差异,可以评估基于特征的调制的空间特异性(右)。如果运动图中注意运动条件的激活差异(刺激相反)较大,则增强是局部的。然而,如果关注颜色和运动条件之间的激活差异相似,则增强在特征维度图上是全局的。