用高科技合金制造结构件的成本很高,因此,缺陷或磨损的修复对工业生产来说是一项重要的资产[1]。在众多新技术中,激光熔覆(又称直接能量沉积)正处于新兴领先地位。与其他修复工艺相比,熔覆中的能量输入是空间局部的,受热影响区较小[2–4]。在激光熔覆修复的部件中,基材和熔覆区之间会形成一个具有微观结构梯度的界面。它决定了修复部件的内聚力和寿命[5, 6]。工艺参数和部件的具体几何形状共同控制着热输入、熔池形状、空间温度梯度和冷却速度,而这些因素决定着材料的微观结构。材料体积可以经过多次凝固-再熔化循环,打印上述各层,具体取决于熔池深度和形状,熔池深度和形状可能非常复杂,正如 Biegler 等人在 [7] 中通过实验展示的那样。材料随后也会经历退火,因为部件一直处于高温下,直到工艺结束 [8, 9]。
光学透明神经微电极有助于同时从大脑表面进行电生理记录以及神经活动的光学成像和刺激。剩下的挑战是将电极尺寸缩小到单细胞大小并增加密度,以高空间分辨率记录大面积的神经活动,从而捕捉非线性神经动力学。在这里,我们开发了透明石墨烯微电极,它具有超小开口和大而透明的记录区域,视野中没有任何金延伸,高密度微电极阵列高达 256 个通道。我们使用铂纳米粒子来克服石墨烯的量子电容极限,并将微电极直径缩小到 20 μm。引入了层间掺杂的双层石墨烯以防止开路故障。我们进行了多模态实验,将微电极阵列的皮质电位记录与小鼠视觉皮层的双光子钙成像相结合。我们的结果表明,视觉诱发反应在空间上是局部的,适用于高
在史瓦西坐标系中,坍缩壳层的经典演化过程中,史瓦西相对流与固有时间的关系实际上迫使我们将黑洞的形成解释为一个高度非局部的量子过程,在这个过程中,壳层/反壳层对在初始视界内产生,从而恰好在视界处抵消原始坍缩壳层。通过研究黑洞背景中的量子场,我们发现了类似的非局部效应。除其他外,霍金对中即将离去的成员会很快与黑洞几何结构纠缠(而不是其伙伴),这与通常的假设相反,即根据视界附近的局部几何结构,霍金对最大程度地纠缠。此外,下落的波甚至在穿过视界之前就会影响黑洞几何结构。最后,我们发现粒子需要有限的时间才能穿过黑洞视界,从而避免在视界处发生的有限蓝移和红移。这些发现有力地支持了黑洞作为宏观量子物体的图景。
功率为 2.64 nW/Hz 1/2,在 0.3 THz 时超快响应时间为 2.5 μs。热介导的 CDW 跃迁允许对设备功能进行微调,在单一架构中集成传感、逻辑和内存。这种方法摆脱了传统的冯·诺依曼架构,通过局部的传感器内计算解决了能源效率和延迟瓶颈,从而实现了范式转变。此外,我们的研究结果深入了解了 CDW 系统中对称性破坏机制、量子相干性和非平衡动力学的相互作用,阐明了驱动设备性能的潜在物理原理。多场控制下电阻状态的长期保持和强大的相位稳定性证明了基于 CDW 的设备用于安全通信、加密处理和可编程光电逻辑的可行性。这些结果强调了 CDW 驱动的热电逻辑系统在推进太赫兹光电网络方面的变革潜力,同时拓宽了对凝聚态物理学中相关量子现象的理解。
在具有直接循环极化发射的发光二极管中,实现高电发光的非对称因子和高外部量子效率同时在发光二极管中具有挑战性。在这里,我们表明,基于手性钙钛矿量子点,可以同时在发光二极管中同时实现高发光的不对称因子和高外部量子效率。特定的,手性的钙钛矿具有手性诱导的自旋选择性可以同时用作局部的辐射辐射推荐中心,用于自旋极化载体的循环极化载体,从而抑制了旋转的放松,从而抑制了旋转的旋转,并改善了旋转的旋转,并促进了旋转的旋转效果,并促进了旋转的旋转效果,旋转了旋转的效果,供应型旋转效果。属性,以便可以促进产生设备的授权电源。我们的设备同时表现出高电致发光的非对称因子(R:0.285和S:0.251)和高外部量子效率(R:16.8%和S:16%),证明了它们在构建高表现性手性光源方面的潜力。
摘要生成模型最近彻底改变了机器学习,并长期以来一直认为是生物智能的基础。在动物中,数据表明海马形成学习并使用生成模型来支持其在空间和非空间记忆中的作用。在这里,我们引入了海马形成的生物学上合理模型,该模型将我们应用于连续的输入流中的Helmholtz机器。快速theta波段振荡(5-10 Hz)门通过网络流动的方向,训练它类似于高频唤醒式睡算法。我们的模型可以从感觉刺激中准确地推断潜在状态,并在离线上产生逼真的感觉预测。在导航任务上接受了训练,它通过开发环圈吸引子来学习可以集成的导航任务,并可以在与以前的理论但生物学上难以置信的建议之间灵活地传输这种结构。虽然许多模型具有一般性的生物学合理性,但我们的模型在一个简单和局部的学习规则下捕获了各种海马认知功能。
近年来,卤化物钙钛矿材料已用于制造高性能太阳能电池和发光装置。然而,材料缺陷仍然限制了器件的性能和稳定性。在这里,基于同步加速器的布拉格相干衍射成像用于可视化卤化物钙钛矿微晶体中的纳米级应变场,例如缺陷局部的应变场。尽管 MAPbBr 3 (MA = CH 3 NH 3 + ) 晶体具有很高的光电质量,但其内部存在明显的应变异质性,并且通过分析其局部应变场可以识别出〈100〉和〈110〉刃位错。通过在连续照明下对这些缺陷和应变场进行原位成像,发现了数百纳米范围内剧烈的光诱导位错迁移。此外,通过选择性研究被 X 射线束损坏的晶体,较大的位错密度和增加的纳米级应变与材料降解和使用光致发光显微镜测量评估的显著改变的光电特性相关。这些结果证明了卤化物钙钛矿中扩展缺陷和应变的动态性质,这将对设备性能和操作稳定性产生重要影响。
在我们接受皮肤免疫的志愿者中,对 KLH 蛋白的反应是高度抗原特异性的体内 T 细胞依赖性反应,该反应针对的是第一次注射后留在局部的残留抗原,宿主对该抗原具有原发性免疫 T 细胞 JMR。然后,对二次皮肤测试暴露也引发了类似的反应。此类反应还包括具有不同动力学的抗原特异性 T 细胞增殖,这些反应现在已经成熟,可以进行更现代的分子分析。认识到对 mRNA Covid-19 疫苗的反应类似于 JMR 和 CBH 反应,可能会导致对患者进行皮肤测试和其他相关研究,以更好地了解 SARS-CoV-2 感染。也许所谓的“长期 Covid”具有相似的发病机制,并且可以对适合 JMR 和 CBH 反应的治疗作出反应。一个例子可能是在接受联合抗组胺药治疗的长期 Covid 患者中看到的改善,因为组胺的来源可能是嗜碱性粒细胞。 5
混合储能系统 (HESS) 由两种或两种以上类型的储能组件以及连接它们的电力电子电路组成。因此,该系统的实时容量高度依赖于系统状态,不能简单地用传统的电池模型来评估。为了应对这一挑战,本文提出了一种等效充电状态 (ESOC),它反映了特定运行模式下 HESS 单元的剩余容量。此外,所提出的 ESOC 还应用于分布式 HESS 的控制,该 HESS 包含多个具有自己本地目标的单元。为了在这些单元之间最佳地分配总功率目标,提出了一种基于稀疏通信网络的分层控制框架。该框架从功率输出能力和 ESOC 平衡两个方面考虑了 HESS 中的分布式控制和最佳功率分配。基于一次下垂控制,根据每个单元的最大输出容量分配总功率,并使用二次控制从 ESOC 平衡的角度调整功率。因此可以控制每个储能单元来满足微电网局部的功率需求,基于MATLAB/Simulink的仿真结果验证了所提等效SOC应用的有效性。
在过去的几年中,晶体拓扑已在光子晶体中使用,以实现边缘和角落的状态,从而增强了潜在的设备应用的光 - 物质相互作用。然而,当前用于对散装拓扑结晶相分类的带理论方法无法预测任何结果边界 - 定位模式的存在,定位或光谱隔离。虽然不同晶相中的材料之间的界面必须具有某种能量的拓扑状态,但这些状态不必出现在带隙内,因此可能对应用没有用。在这里,我们得出了一类局部标记,用于识别由于结晶对称性以及相应的拓扑保护量度。作为我们基于真实空间的方法本质上是局部的,它立即揭示了拓扑边界 - 定位状态的存在和鲁棒性,从而产生了设计拓扑结晶异质结构的预测框架。除了启用设备几何形状的优化外,我们预计我们的框架还将为依赖空间对称性的其他类别的拓扑类别提供局部标记提供途径。