全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
抽象造血是一个连续的过程,其中前体细胞在整个生命中都会增殖和分化。但是,控制这一过程的分子机械尚未明确定义。编码DNA结合同源域的含同源物基因是一个高度保守的基因网络。它们是在具有位置层次结构的发育胚胎中表达的簇中组织的。我们已经分析了四个人HOX基因座在红血病,叶虫细胞和单核细胞系中的表达,以研究人类HOX基因的物理组织是否反映了造血细胞分化过程中涉及的调节性层次结构。我们的结果表明,代表血液 - 诗分化的各个阶段的细胞显示出HOX基因表达的差异模式,并且HOX基因在可能包括整个基因座的块中协调或关闭。在分析的所有线路中,整个HOX4基因座都保持沉默,几乎所有HOX2基因在红血球细胞中都活跃,并在髓样限制的细胞中关闭。我们的观察结果提供了有关HOX基因调控的信息,并表明这些基因的坐标调节可能在血液早期阶段的谱系确定中起重要作用。
我们研究了双层kitaev蜂窝模型的相图,并通过层间相互作用,通过扰动理论得出有效的模型,并执行majoragarana含义层次的理论计算。我们表明,会发生各种磁性和拓扑相变的阵列,具体取决于层间相互作用的方向以及Kitaev相互作用的相对符号。当两个层具有相同的基塔夫相互作用的迹象时,就会发生从基塔耶旋转液体到磁序状态的一阶过渡。沿Ising轴的磁性点,它是(反)铁磁相互作用的(抗)铁磁。但是,当两个层具有相反的基塔夫相互作用的迹象时,我们观察到磁有序趋势的显着削弱,而基塔伊夫自旋液体可以生存,直至更大的层中层交换。我们的平均值分析表明,中间间隙z 2旋转状态的出现,最终在粘膜凝结后变得不稳定。通过高度沮丧的120°指南针模型来描述汇总阶段。我们还使用扰动理论来研究模型,沿着z ˆ轴或位于xy平面的ising轴指向。在这两种情况下,我们的分析都揭示了一维伊斯丁链的形成,这些链在扰动理论中保持脱钩,从而导致了典型的地面变性。我们的结果突出了双层量子自旋液体中拓扑顺序和磁性顺序趋势之间的相互作用。
引用(APA)Hoekstra,N.,Pellegrini,M.,Bloemendal,M.,Spaak,G。,Andreu Gallego,A.,Rodriguez Comins,J.,Grotenhuis,T.通过含水层热能存储中的创新来增加可再生能源技术的市场机会。总环境科学,第709条,第136142条。https://doi.org/10.1016/j.scitotenv.2019.136142引用此出版物的重要说明,请使用最终公开版本(如果适用)。请检查上面的文档版本。
海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学
稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
在过去的二十年中,对全身麻醉(GA)的安全担忧是由于在各种药理条件和动物模型中记录脑细胞死亡的研究引起的。如今,在整个新生小鼠大脑中对Sevoflurane诱导的细胞凋亡的彻底表征将有助于识别并进一步关注潜在的机制。使用组织清除和免疫组织化学,我们在产后日(P)7小鼠中对七氟氨酸诱导的凋亡进行了全脑作图。我们发现切割叶片3染色的解剖学上异体增加。新型P7脑图集的使用表明,新皮层是受影响最大的区域,其次是纹状体和脑脑。皮质切片中的组织学表征确定有丝质神经元是受影响最大的细胞类型,并遵循后骨皮质浅层层中最大凋亡的心脏内和心脏内梯度。这里使用的无偏解剖学映射使我们能够在围产期,新皮层受累,并指示纹状体和脑遗传损伤的同时,同时表明中度的海马一方面。新皮质梯度的鉴定与成熟依赖性机制一致。然后,进一步的研究可以集中于七氟醚对发育过程中神经元迁移和生存的干扰。
在这里,我们报告了Inn纳米线太阳能电池的第一个实验证明,该电池是通过以1.78 eV的带隙能量溅射来沉积的。通过在N -Inn/ P -SI结构中添加无定形Si(A -SI)缓冲液,我们在保持其材料质量的同时,提高了所得设备的光伏性能。我们首先通过DC溅射在Si(100)上优化了Si的沉积,获得了带隙能量为1.39 eV的无定形材料。然后,我们研究了A-SI缓冲层(0 - 25 nm)对Inn纳米线对Si(100)底物的结构,形态,电气和光学性质的厚度的影响。使用15 nm缓冲液N -Inn/A-Si/P-Si纳米线异质结式太阳能电池表现出令人鼓舞的短路电流密度为17 mA/cm 2,开路电压为0.37 V,填充因子为35.5%,指向2.3%以下2.3%以下(Am 1 Sun)(AM 1.5G)(AM 1.5G)。这些工作降低了距离溅射的A-SI的组合,可以用作潜在的钝化层,而纳米结构的活性层的光捕获增强可提高溅射的III-nitride设备的光伏效率。
根瘤菌是土壤细菌,可以与豆科植物建立氮固定共生。作为水平传播的共生体,根瘤菌的生命周期包括土壤中的自由生活阶段和植物相关的共生阶段。在整个生命周期中,根瘤菌暴露于与它们相互作用的无数其他微生物中,从而调节其拟合度和共生性能。在这篇综述中,我们描述了根茎与其他微生物之间相互作用的多样性,这些微生物在根际,结节开始和结节中可能发生。这些根瘤菌 - 微生物相互作用中的某些是间接的,并且发生某些微生物的存在以一种以根瘤菌的方式反馈的植物生理学的存在。我们进一步描述了这些相互作用如何对根瘤菌施加显着的选择性压力并修改其进化轨迹。对复杂的生物环境中根茎的生态进化动力学进行更广泛的研究可能会揭示出这种认真的共生相互作用的引人入胜的新方面,并为未来的农艺应用提供了关键的知识。