摘 要: 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于 Informer 架构和长短时记忆网络( long short-term memory, LSTM )与多源数据融合的冠层区域温度预测模型。在编码层 中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用 LSTM 提取 短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络( improved residual feedforward network, IRFFN )以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关 系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对 超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他 4 种主流算法进行对比分析,提出的 Informer- LSTM 在冠层区域温度预测方面表现出更高的精度,其平均绝对误差( mean absolute error, MAE )、均方根误差( root mean square error, RMSE )和决定系数( R 2 )分别达到了 0.166 、 0.224 ℃和 97.8% ,与基础模型 Informer 相比,冠层区 域温度的预测精度提高了 32.36% 。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提 供了一种新的技术方法。 关键词: 冠层 ; 温度 ; 非线性时间序列 ; 长短期记忆神经网络 ; Informer doi : 10.11975/j.issn.1002-6819.202409001 中图分类号: TP18 ; S165 文献标志码: A 文章编号: 1002-6819(2025)-07-0001-11
材料Sio 2。在拓扑模式下,电场高度局部位于分层结构的反转中心(也称为界面),并成倍地衰减到批量上。因此,当从战略上引入非线性介电常数时,出现了非线性现象,例如Biscable状态。有限元数值模拟表明,当层周期为5时,最佳双态状态出现,阈值左右左右。受益于拓扑特征,当将随机扰动引入层厚度和折射率时,这种双重状态仍然存在。最后,我们将双态状态应用于光子神经网络。双态函数在各种学习任务中显示出类似于经典激活函数relu和Sigmoid的预测精度。这些结果提供了一种新的方法,可以将拓扑分层结构从拓扑分层结构中插入光子神经网络中。
摘要 —比特币的崛起使区块链技术成为主流,放大了其潜力和广泛用途。虽然比特币已经变得非常出名,但其交易率并没有相应提高。挖掘一个区块并将其添加到链中仍然需要大约 10 分钟。这一限制凸显了寻求解决低吞吐量交易率的扩展解决方案的重要性。区块链的共识机制使点对点交易变得可行,并有效地消除了对集中控制的需求。然而,正如我们提到的比特币的区块创建率,与集中式网络相比,分散式系统也导致速度和吞吐量较低。为了解决这些问题,已经实施了两种主流的扩展解决方案,即第 1 层扩展和第 2 层扩展。第 1 层可扩展性的增强发生在传统区块链运行的地方。本文深入研究了第 1 层协议的组件以及直接改进底层区块链的扩展方法。我们还指出,尽管由于第 1 层存储成本高且延迟高,第 1 层解决方案仍存在固有的局限性,尽管已经进行了改进。此外,我们还讨论了第 2 层协议,即高级可扩展性技术,通过处理主网外的交易来提升区块链性能。我们的研究结果表明,第 2 层协议及其各种实现(例如汇总和通道)在交易吞吐量和效率方面明显优于第 1 层解决方案。本文详细讨论了这些第 2 层扩展方法,旨在让读者全面了解这些协议及其有效性的底层逻辑。关键词 密码学、区块链、可扩展性、Web3
气密性测试要求旨在测量气密性并确定与空气泄漏相关的问题,这些问题会影响整体建筑性能、能源效率和室内空气质量。这是通过在 75 帕斯卡 (Pa) 的压力下对建筑物外壳进行整栋建筑空气泄漏测试来实现的,该测试模拟了建筑物因温度和风的变化而经历的典型情况。该实践包括密封所有可操作的开口并对建筑物加压以测量通过外壳的空气泄漏阻力。表 4 提供了机构和商业建筑的性能和提交要求摘要。
ISSN 标题 STRATE 21775141 (NT) 翻译文学杂志 22375953 (重新)思考法律 B4 24093823 [C]COMPASSESWORLD:建筑和室内设计国际网络 |中东 NP 24694312 [IN] 过渡 B2 23187344 @巴西教育登记册 23280662 # ISOJ 杂志 C 22380272 #10.ART NP 19839537 14TH NP 1981030X 19&20(里约热内卢) B1 23179953 1ST 分析 - SEADE NP 00942898 2010 第 42 届东南系统理论研讨会 (SSST) NP 22364285 20TH。 COMPÓS NP 20531583 2D 材料 A2 22376143 第二届巴西生产工程大会 NP 22378758 第二届葡萄牙语教学国际研讨会 B1 21905738 3 生物技术 A4 16682939 30-60 CUADERNO LATIN AMERICANO DE ARQUITECTUR C 23297662 3D 打印和增材制造 A2 23297670 3D 打印和增材制造(在线) A2 16194500 4OR(柏林) A2 18081142 5% 建筑 + 艺术 A4 21758182 53 巴西混凝土大会 - IBRACON 201 C 21758174 54 巴西混凝土大会 CBC 201 C 21758132 978-85-98936-04-8 NP 25256556 私人关系范围内基本权利的(不可)追加性。 B4 01047922 水杂志 C 22366695 BARRIGUDA:科学杂志 B3 25948245 BRUX C 08711097 城市(PORTALEGRE C 22370455 大学与社区之间的对话交流 B4 15487083 逆流(北卡罗来纳州罗利) B3 21451958 CONTRATIEMP C 25949675 字母的颜色 A3 14158973 字母的颜色(UEFS) A3 00117641 国防 B4 14136090 经济杂志 B3 22362029 经济杂志 - AERE B3 19836422 学校物理学(印刷版) B1 15578100 A 综合生物学杂志 A4 00239135 A LAVOURA (RIO DE JANEIRO C 19841035 A 阅读:PAR 州高等司法行政官学院笔记本 C 21752516 A 边缘:人文科学、文学和艺术电子杂志 B3 16473248 A 教育页面 NP 22364536 A PALAVRAD C 21763356 A PALO SECO:哲学和文学著作 C 21756104 A PESTE:精神分析与社会 C 2319037X FOC 杂志 C 16760336 第三年龄 B4 21751951 不死者的生活 C 00445592 A. RIVISTA ANARCHIC C 00946354 AANA 杂志 A3 15163210 A&C.行政与宪法杂志(印刷版) A2 24485764 A&H B2 23626089 A&P CONTINUITY A4 10283072 AAA。安蒂兰建筑文件 C 15597776 AACN 高级重症监护 B1 12321966 AAEM。农业与环境医学年鉴 B3 01491423 AAPG 公报(印刷版)A1 15221059 AAPS PHARMSCI A3 15309932 AAPS PHARMSCITECH A3
对无限层镍酸盐的研究已经揭示了一个破裂的翻译对称性,这对其根部引起了浓厚的兴趣,与超导性的关系以及与丘比特的电荷顺序的比较。在这项研究中,在无限层Prnio 2+ 𝛿薄膜上进行了谐振X射线散射测量。与PR𝑀5共振在依赖能量,温度和局部对称性的pr𝑀5共振相比,Ni𝐿3吸收边缘在Ni𝐿3吸收边缘处的超晶格反射的显着差异。这些差异指出了两个不同的电荷顺序,尽管它们具有相同的平面内波vector。鉴于在不完全降低的prnio 2+膜中观察到谐振反射,这些差异可能与多余的氧气掺杂剂有关。此外,方位角分析表明,氧配体在Ni𝐿3共振下揭示的电荷调制中可能起关键作用。
摘要 原子层沉积(ALD)已成为当代微电子工业中不可或缺的薄膜技术。ALD 独特的自限制逐层生长特性使该技术能够沉积高度均匀、共形、无针孔的薄膜,并且厚度可控制在埃级,尤其是在 3D 拓扑结构上。多年来,ALD 技术不仅使微电子器件的成功缩小,而且还使许多新颖的 3D 器件结构成为可能。由于 ALD 本质上是化学气相沉积的一种变体,因此全面了解所涉及的化学过程对于进一步开发和利用该技术至关重要。为此,我们在本综述中重点研究 ALD 的表面化学和前体化学方面。我们首先回顾了气固 ALD 反应的表面化学,并详细讨论了与薄膜生长相关的机制;然后,我们通过比较讨论 ALD 工艺中常用的前体来回顾 ALD 前体化学;最后,我们有选择地介绍了 ALD 在微电子领域的一些新兴应用,并对 ALD 技术的未来进行了展望。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。