包括Intel热速度提升的效果,该功能可以自动和自动将时钟频率提高到单核和多核Intel Turbo Boost Technology频率以下,该频率是根据处理器低于其最大温度以及Turbo发电预算是否可用的。频率增益和持续时间取决于工作负载,处理器的功能和处理器冷却解决方案。
的工作表明,整个清洁室空气的控制是必不可少的,不仅在清洁度(无颗粒),温度和湿度方面,而且在房间内的空气流动方向方面。为了实现对气流的全部控制,惠特菲尔德开发了层流层清洁室。在此设施中,通过HEPA过滤器将大量空气引入了房间。过滤库充当大型空气供应扩散器,并大大降低了供应空气的速度。空气倾向于以最小的湍流和单向方式离开过滤器。然后,这种空气通过一系列的格栅从房间用尽了,这些格栅的面积与入口扩散器的面积相等。空气流是从一个墙(入口)到地板(排气),从天花板(入口)到地板(排气),或者从一个入口墙到对面的排气墙。在这样的系统中,过滤(HEPA)空气使一个均匀的空气通过垂直(下流)或水平(交叉流)模式穿过干净的房间。
本文描述的追踪通路的方法包括对来自同一组 171 名人类连接组计划参与者的 7T 结构和功能 MRI 数据执行的扩散纤维束成像 (Huang et al., 2021)、功能连接和有效连接 (Ma et al., 2022; Rolls et al., 2022a; Rolls et al., 2022b; Rolls et al., 2023a; Rolls et al., 2023b; Rolls et al., 2023d),以及对 88 名人类连接组计划 (Larson-Prior et al., 2013) 参与者执行的脑磁图 (Rolls et al., 2023c)。扩散拓扑图测量的是大脑区域之间的直接解剖通路,而不是方向,不提供有关连接方向的证据,并且在上述研究中,功能和有效连接可以作为有益的补充,因为扩散纤维束成像有时可能会在通路交叉的地方产生假阳性,并且可能会错过一些特别长的通路。功能连接是通过一对皮质区域中的 BOLD 信号之间的 Pearson 相关性来衡量的,可能反映间接相互作用和共同输入,并且不提供有关任何影响方向的证据。然而,高功能连接确实反映了一对大脑区域的相互作用程度,并且确实反映了功能,因为它在静息状态和任务执行之间是不同的。本文描述的调查中使用了静息状态连接,因为它可以提供一个基本的连接矩阵,即使参与者可能无法执行特定任务(如某些精神障碍),也可以对其进行调查。有效连接旨在衡量两个大脑区域在每个方向上相互影响的程度,并利用时间延迟来估计有时被描述为因果关系的东西。有效的连接对于测量皮质区域之间尤其重要,因为至少在皮质层次结构中,解剖结构是不对称的,通常皮质层 2 和 3 向前投射到下一个皮质区域的层 2 和 3,而反向投影往往起源于更深的皮质层,并投射回前一个皮质区域的层 1,终止于皮质锥体细胞的顶端树突,因此可能具有较弱的影响,可以通过自下而上的前向输入分流(Markov et al., 2013; Markov and Kennedy, 2013; Markov et al., 2014; Rolls, 2016, 2023)。我们测量的有效连接被描述为全脑生成有效连接,因为它是可以生成所有 360 个皮质区域之间的功能连接和延迟功能连接(fMRI 为 2 秒,MEG 为 20 毫秒)的有效连接矩阵,并使用基于相互作用的 Stuart-Landau 振荡器的皮质连接模型的 Hopf 算法(Deco 等人,2019 年;Rolls 等人,2022b 年;Deco 等人,2023 年;Rolls 等人,2023c 年)。
垂直洁净工作台可为拥挤区域的样品和设备提供更好的保护。外壳前部的玻璃窗框将 HEPA 过滤空气向下引导通过工作区,确保工作区完全被空气包围。垂直洁净工作台的设计可以消除扩散器和关键活动之间空气阻塞的风险,从而比水平洁净工作台更具优势。垂直型号通常安装在底座或台面上。
根据薄翼型理论,翼型近似于隧道中心四分之一弦点(x=0,y=0)处的单个涡流。风洞壁由距离为 h 且符号交替的无限垂直涡流行模拟,位于真实涡流上方和下方(见图 4)。在隧道中心线上的位置 x 处引起的水平速度相互抵消,但垂直分量相加。在涡流位置处,引起的垂直分量为零并改变符号。在封闭的隧道中,流动的曲率必须使得没有气流穿过隧道壁。