独立的化粪池和无菌操作领域作者应得的感谢您讨论手术室中微生物负载的限制性主题(1),作为减少这种情况下微生物负载的可持续措施是必不可少的。表1和表2中比较了化粪池和无菌外科手术,并在操作室的空气中发现微生物的平均值较高,用于化粪池,尤其是形成细菌的有氧孢子(1)。作者强调,“两种过程类型之间的差异在统计学上微不足道的事实不能[…]被解释为平等微生物载荷的直接证据”。但是,在他们的结论中,作者建议不要分开手术室。操作区域具有关键作用。根据日内瓦大学医院的一项前瞻性研究,其中包括6101家联合假体(平均随访70个月),90%的感染起源于手术期间,31%的感染率在> 2年后出现了初始症状(2)。一项前瞻性随机研究表明,微生物在手术室空气中构成的风险(3):„分析从手术结束时伤口冲洗的细菌数量到手术室气氛中受伤的细菌数量与受伤部位患者皮肤上的细菌数量之间的关系,清楚地表明,最重要的和一致的containe of contain of contain of contain是contain的途径。”一项对8052个联合假体的多中心研究表明,在手术室中,感染率随空气污染的增加而上升,而层流空气流量比湍流混合通风更好地保护(4)。doi:10.3238/arztebl.2017.0755a然而,尽管有通风技术,但仍会发展感染。根据Harnoss等人报道的研究。(1)以及上述研究结果,不能提出任何建议,以取消化粪池和无菌手术室之间的分离,以进行外科手术的高风险。
该计划是由伊万·阿尔森耶维奇(Yvan Arsenijevic)教授在告别课程之际开发的,这是密集的,它将允许我们的同事向您展示研究主题和令人兴奋的案例。我们很荣幸能在附近的9天合作近25年,而伊万(Yvan)通过众多项目为基金会内的研究开发做出了贡献。于2000年到达基金会,伊万(Yvan)通过开设一项实验室,该实验室拥有所有基本技术,以确保通过分子,蜂窝和体内方面确保眼科实验。通过对视网膜中的细胞与干细胞不同来源的分化以及通过该研究领域的发展到诱导的多层流干细胞的研究,他对中枢神经系统的干细胞的了解很快适应了眼睛。,但他对自己的达达不满意!他找到了其他人,并研究了视网膜变性的机制,当然还有创新疗法的发展,其基因疗法和最近的核酸版本。他特别获得了阿尔弗雷德·沃格特奖和全球眼科奖计划。Yvan曾培训过许多研究人员,并被要求通过SNF,Italian Telethon,AFM,Inserm,Inserm,英语,德国机构或欧洲委员会评估许多科学项目,研究人员或研究中心(FP7)。因此,他以一种非常建设性的方式为欧洲乃至大西洋另一端的眼科研究进步做出了贡献。他的好奇心和同情心使他与研究人员,技术人员,临床医生或患者互动并建立了互动。Y. Arsenijevic教授的退休标志着非凡的职业生涯的终结!我们希望伊万享受这个新的自由的每一刻,希望他一生中的新章节能给他带来很多满足和伟大的发现!老师托马斯·J·沃尔文斯伯格(Thomas J. Wolfensberger
摘要:由于人为活性,海洋的汞含量(HG)含量增加了两倍,尽管黑海洋(> 200 m)已成为重要的HG储层,但有毒和生物蓄积的甲基汞(MEHG)的浓度很低,因此很难测量。因此,当前对深海中HG周期的理解受到严格的数据限制,控制MEHG的因素及其转换率仍然很大程度上未知。通过分析52个全球分布的巴基拉质深元素宏基因组和26个来自Malaspina Expedition的新元转录组,我们的研究揭示了在全球浴类海洋中(〜4000 m深度)中细菌编码基因Mera和Merb的广泛分布和表达。这些基因与Hg II还原和MEHG脱甲基化相关的基因在粒子附着的分数中尤为普遍。此外,我们的结果表明,水质量年龄和有机物组成塑造了拥有Mera和Merb基因的结构,这些群落和Merb基因生活在不同的粒径分数,其丰度及其表达水平。命令的成员Corynebacteriales,Rhodobacterales,Alteromonadales,Oceanospirillales,Moraxelleles和Flavobacteriales是深海中包含Mera和Merb基因的主要分类参与者。这些发现,加上我们先前具有具有代谢能力降解MEHG的深层层流海洋的纯培养物分离株的结果,表明甲基汞脱甲基化和HG II还原可能发生在全球黑暗海洋中,这是生物圈中最大的生物组。关键字:汞,甲基汞,浴样,细菌脱甲基化,宏基因组,metatranscriptomes,mer基因■简介
• CU 博士论文工作 2018 年 8 月至今 直驱发电机比齿轮发电机具有更高的可靠性;但是,它们通常非常大(10MW 涡轮机重达 220 吨)。其中大部分质量是结构支撑材料。通过实施适合增材制造的拓扑优化和晶格结构,发电机重量可减轻多达 50%。此外,通过集成先进的冷却方法,可以显着提高功率密度,从而进一步减轻重量并降低机器成本。我制造了一个定制的 3 kW 发电机来测试各种冷却技术所能实现的最大电流密度,并使用这些数据来支持高功率密度 12 MW 直驱风力涡轮发电机的分析设计。我还研究了增材制造的空气质量和糊料挤出工艺的建模。 • HP Inc 金属 3D 打印实习生 2019 年 5 月 - 2019 年 8 月 在 HP Inc 的第二次实习中,我致力于开发用于现场打印机监控的方法和指标,以改善分层缺陷和各向同性。粉末粘合剂喷射本质上是一个分层过程,这会导致烧结缺陷。我创建了一个 MATLAB 脚本来自动分析烧结横截面以确定定量打印指标 • HP Inc 金属 3D 打印实习生 2018 年 5 月 - 2018 年 8 月 在 HP Inc 工作期间,我开发了一种高速成像装置,以更好地了解 3D 打印过程。我研究了粉末粘合剂喷射应用中的粉末-粘合剂相互作用。金属打印提出了聚合物粉末-粘合剂喷射中未曾见过的独特挑战;因此,我的工作是为了更好地理解这些独特的挑战。 • RIT 硕士论文工作 2016 年 8 月 - 2018 年 5 月 在我的硕士论文中,我使用金属增材制造的微结构来增强池沸腾传热。RIT 与 Vader Systems 合作,获得了第一台液体磁喷射 3D 打印机(现为 Xerox ElemX)。该打印机使用线材将熔融的铝液滴一滴地喷射到构建平台上,以产生高沉积速率和高分辨率。在我的项目中,我使用这项技术构建了新颖的微结构,以利用增材制造实现的气泡设计将池沸腾传热提高多达 7 倍•微流体高级设计项目(HP 赞助)2017 年 8 月 - 2018 年 5 月通过 RIT 进行的多学科项目,我们小组在惠普公司的支持下提出了自己的项目。我们开发了一种方法来创建一种低成本的微流体装置以评估层流的混合。目前,很难混合层流状态(例如生物医学应用所需的层流状态)。通过在 FAB 中的硅晶片上创建集成电阻加热器,并与低成本封装方法接口实现密封,可以创建一个流动混合装置。混合机制来自于实现类似于 HP 专利热喷墨技术的局部亚稳态沸腾。该项目是一个正在进行的研究项目,旨在确定其可行性和影响混合的参数。• NREL 科学本科实验室实习生 2017 年 5 月 - 2017 年 8 月在 NREL 工作期间,我使用有限元分析 (ANSYS) 来确定减轻大型直驱发电机重量的潜力。这可以减少 24% 的质量,同时还可以将径向偏转减少 60%。最佳的添加方法是粉末粘合剂喷射,并使用多喷射打印创建实验模型以证明设计的可打印性。我们的研究产生了两份会议论文集和两项 ASME 论文奖。• 在 IBM 与高级热能效率实验室合作 2016 年 5 月 - 2016 年 8 月在 IBM,我的工作是密封一个实验性的两相测试回路,该回路之前出现泄漏,已停运一年半。这涉及使用与 Matlab 脚本交互的 LabVIEW 数据采集来确定 Swagelok 系统是否长时间保持真空。此外,我与其他实习生和热工程师合作设计了一张流量卡,以模拟主机中的实际压降。然后,这张流量卡被 3D 打印出来并进行测试,以查看它是否对齐
在合成过程中,纳米材料会逐渐发生转变,从而产生明确的纳米晶体特性。目前,工业上最广泛使用的是纳米材料的批量合成。然而,由于批量反应器内混合不一致、局部浓度和温度变化,出现了可重复性和可扩展性问题。在流动合成中,使用微流体反应器可以克服这些限制,因为大的表面积与体积比可以增强热量和质量传递,从而加快反应速度并提高产量。[4c,5] 在快速化学中,化学转化发生得非常快,并且仅通过混合过程进行控制。因此,微流体系统内的增强混合使涉及不稳定中间体的快速连续反应能够发生 [6],由此产生的均质环境提高了对所需产品的选择性,从而提高了反应产量。此外,流动化学可以通过控制反应的停留时间,在不稳定的反应性物质分解之前将其分离 [7],方法是调节反应物的流速或微反应器长度。高混合性是微流体系统的一个关键优势,尽管在层流状态下,缓慢扩散占主导地位。[8] 微通道内产生的抛物线速度分布导致较长的停留时间,这不可避免地会产生粒度分散性,[10,35] 如图 1A 所示。促进对流并增强微通道内的混合是减少这种多分散性的一种方法,例如,通过在拐角和弯道引入 Dean 涡流或通过分段液-液/液-气流动引入 Taylor 涡流,[10,36] 如图 1B 所示。此外,流动化学中对反应参数的严格控制是实现实验室间反应条件标准化的一个主要优势,从而提高了实验的可重复性。[10] 在安全性方面,微流体系统消耗的危险试剂量较少,降低了安全风险,并允许使用否则会非常危险的极端化学条件。
权力来源:农场的权力来源 - 人类,动物,机械,电气,风,太阳能和生物质;生物燃料。农场力量:LC的热力学原理。引擎;我知道了。发动机周期;发动机组件;燃料和燃烧;润滑剂及其特性; LC。发动机系统 - 燃料,冷却,润滑,点火,电气,进气和排气; I.C.的选择,操作,维护和维修引擎;功率效率和测量;计算功率,扭矩,燃油消耗,热负荷和功率损失;性能指数,工具和拖拉机的成本分析。拖拉机和电力耕种者:类型,选择,维护和维修拖拉机和电力分配者;拖拉机离合器和刹车;电力传输系统 *齿轮列车,差速器,最终驱动器和动力起飞;拖拉机底盘的力学;牵引理论;三点挂钩 - 免费链接和约束链接操作;拖拉机中使用的转向和液压控制系统;拖拉机测试和性能;拖拉机和农具设计中的人工工程和安全考虑。土壤和水保护工程流体机械:理想和真实的流体,流体的特性;静水压力及其测量;连续性方程,运动学和流动动力学;伯努利定理;管道中的层流和湍流,达西·韦斯巴赫(Darcy Weisbach)和Hazen-Williams方程,穆迪(Moody's)图;流过孔口,堰和缺口;在开放通道中流动,尺寸分析 - 几何无限数字的概念。土壤力学:土壤的工程特性;基本定义和关系;土壤的索引特性;渗透性和渗漏分析;剪切力,Mohr的压力圈,主动和被动的地球压力;斜坡的稳定性,Terzaghi的一维土壤整合理论。- ,水文:水文循环和其成分的测量;气象参数及其测量;分析降水数据;径流估计;水文分析,单位水文理论和应用;流量测量;
大规模生物量存储用于现代生物能源,由于生物量的内在自我加热引起了潜在的安全问题。尽管如此,在该领域进行了非常有限的研究。该项目通过开发一个综合的建模框架来填补一个关键的空白,以在生物质桩中进行自加热并进行一系列实验研究,以探索这些桩中复杂的子过程。本文仅介绍建模和测试工作的一小部分。它成功地证明了该模型在预测煤炭堆自动加热方面的有用性,从而指导煤炭储存的安全措施。在各种存储参数中,桩高,粒径和环境风速度已被确定为对煤桩内的自加热和自我命运产生重大影响。本文还说明了初始生物质水分含量对微生物反应性和氧气消耗率的明显影响。初始水分含量的增加显着提高了整体微生物反应性和氧气消耗率。小麦稻草在相同的储存条件下更容易自热,这可以证明,较高的热量产生,更快的氧气消耗以及较短的时间到达峰值温度。此外,发现微生物活性在生物质自加热中起着至关重要的作用,尤其是在热量累积的初始阶段,在0 - 75℃的温度范围内。对于此处讨论的建模,尽管桩上的流动较高,但必须将多孔桩中的流动视为层流。这是基于雷诺数的数量,该数字是根据速度的in-count量平均值和燃料颗粒的平均直径计算得出的,燃料颗粒的平均直径明显低于临界阈值(RE CR = 200)。可以将生物量桩中相关子过程得出的见解和子模型集成到模型框架中。这种整合将创建一个更全面,更强大的模型,以预测生物质储存桩中的自我加热和自命不凡,从而增强对这些现象的理论和实践管理。
现代纳米材料涂层工艺的特点是高温环境和复杂的化学反应,需要精确合成定制设计。这种流动过程极其复杂,除了粘性行为外,还具有传热和传质特性。智能纳米涂层利用磁性纳米粒子,可以通过外部磁场进行操纵。数学模型提供了一种廉价的洞察此类涂层动力学过程固有特性的方法。受此启发,在当前的工作中,开发了一种新的数学模型,用于双催化反应物种在轴对称涂层中扩散,该涂层包裹强制对流边界层流,该流来自浸没在饱和磁性纳米流体的均质非达西多孔介质中的线性轴向拉伸水平圆柱体。其中包括均相和异相反应、热源(例如激光源)和非线性辐射传输。部署了 Tiwari-Das 纳米级模型。使用 Darcy-Forchheimer 阻力公式来模拟多孔介质纤维的体积多孔阻力和二阶惯性阻力。磁性纳米流体是一种水性导电聚合物,由基础流体水和磁性 TiO 2 纳米粒子组成。TiO 2 纳米粒子是一种化学反应物质 (A),还存在第二种物质 (B)(例如氧气),它也发生化学反应。粘性加热和欧姆耗散也包括在内,以产生更物理上真实的热分析。这里提出的具有物质扩散(物质 A 和 B)的非线性守恒方程通过适当的流函数和缩放变量转换为一组非线性联合多阶 ODE。在 MATLAB bvp5c 程序中,使用四点 Gauss-Lobotto 公式求解上升非线性常微分边界值问题。使用 Adams-Moulton 预测校正数值方案(Unix 中编码的 AM2)进行验证。包括速度、温度、物质 A 浓度、物质 B 浓度、表面摩擦、局部努塞尔特数以及物质 A 和 B 局部舍伍德数的广泛可视化。关键词:Darcy-Forchheimer 模型;水性功能磁性聚合物;智能涂层流;二氧化钛纳米颗粒分数;非线性辐射;均相和非均相化学反应;数值;边界层包裹;努塞尔特数;舍伍德数。
持续的能源转变意味着地下从未比今天的需求更多。除了选择性探索传统资源的选择性探索和剥削传统资源外,还需要了解CO 2和氢气,以定位关键的矿物质,地热能以及包括风力涡轮机位置在内的工程项目。因此,需要地球科学家来预测和表征地下。这又需要能够关联岩石单元并确定其沉积设置,以构建最合理的地下模型。年度地层学上的显着相关性和古环境解释是生物地层学的长期优势,尤其是与诸如沉积学,序列地层学,同位素地层学和地球物理学等技术集成时。这种应用的生物地层学可以作为桌面研究的一部分或操作期间(例如钻井钻孔)进行。成功的应用生物地层学植根于对所涉及的化石的详细理解,包括商定的分类单元(通过分类学研究)以及对地层范围的理解,理想地是根据标准的年度层流量表进行校准的。生物事件(例如,可以识别出序列和灭绝),按顺序排列,并制定的生物分区方案,由这些事件定义,并由分类单元组合的特征。对某些人来说,这似乎是老式的科学,但它仍然是必不可少的。简而言之,特定化石集团的“地层地图集”的时代尚未过去!滥用分类名称和年龄较差的校准会导致不确定的地层或古环境范围,从而稀释所涉及的化石的力量。校准了Turonian Nannapossil生物事件和生物分配方案是一个很好的例子,尽管进行了数十年的研究,但对化石及其范围的身份达成协议仍然有待实现。可能是通过加速识别和解释程序来改善生物地层理解的数字技术将被证明是有用的,但是它们的成功取决于在理解身份和范围方面的标准化努力。至关重要的是,必须理解应用生物地层学在能量过渡中的价值,而不仅仅是生物地层学家,而且要被一般地球科学界所理解。成功的案例研究和最佳实践需要共享。此外,需要新一代的应用生物地层学者来回答能量过渡的地下挑战。提供最小环境影响的能源是人类面临21
提供了光学脉冲电场的时间演变。这一基础概念的基础概念是在不同媒体中对电子过程的广泛和精确研究为广泛而精确的研究铺平了道路。它提供了固体中相干能量转移动力学的子周期分辨率,[6,7]光定位效应的精确时间分解测量,[8-10]以及对超快多体动力学的实时研究。[11–16]另一方面,量身定制的事件电场可用于以类似晶体管的方式来控制光电子中的库层流,从而导致PHZ Optical Gates。[17,18]这个概念自然遵循了介电上光学诱导电流的显着进展,该电流为超快光电开关提供了基础。[19-21]在两种情况下,速度和灵敏度都是超快速光电设备的两个关键参数。设备的频率带宽越大,光象征信息交换越快;灵敏度越高,所需的光强度就越低。操作速度通常受介质的响应时间的限制,而灵敏度则受到光 - 互动横截面的限制。因此,最大程度地提高了光结合信息交换,取决于这两个参数及其优化。这种限制导致了高电子摩托车晶体管的发展,这表现优于基于硅的同行,达到了1.5 THz的显着切换频率。[18,24]各种物理约束限制了传统电子开关的性能和效率,其中一个示例是电子迁移率,通常会随着材料带隙的函数而降低,[22]将开关功能的较低阈值效果,因为材料具有较大的带镜头的材料,可以实现较大的带镜头,从而实现了较大的带材料的潜力。这种突破性的发展为实现第一个固态放大器的操作铺平了道路。[23]在实心光电设备的情况下,存在对脉冲能,带宽和带宽的模拟限制。依靠强场,几乎没有周期的激光脉冲增加了电荷转移到更高传导带的机会,从而限制了光电子控制的限制。[18]这些结合驱动了需要低脉冲能量的新技术的开发,例如利用纳米结构中增强范围的框架[3]或类似于奥斯顿开关的设备。