与目前的替代化学方法相比,具有较低的自放电率(25 °C 时每年 < 0.5%)。 [1–4] 该系统的控制反应为 CF x + Li → LiF + C,是许多应用的主要候选材料之一,这些应用需要高能量密度,但电池无法充电,例如植入式医疗设备、军事和空间应用或其他极端环境。 [5] CF x 是一种非化学计量化合物,0.5 < x < 1.3,由于共价 CF 键的性质,表现出低电导率。 [1,6] F/C 比(x)取决于前体碳材料(如焦炭、石墨、纤维)的合成工艺和结构性质。 [6] 理想情况下,CF x 具有层状结构,其中每个碳原子与另外三个碳原子和一个氟原子结合,从而使结构的总能量最小化。[7,8]
采用增材制造工艺生产的产品已引起工程、医疗保健和整个社会的高度关注。然而,人们对增材制造合金的失效知之甚少,尤其是大多数工程应用中常见的腐蚀和磨损。这种合金的随意和低效使用引发了人们对安全性、兼容性、可靠性、成本和消费者满意度的担忧。为了解决这些问题,我们根据已发表的文献研究了通过增材制造制造的合金最常见的失效模式——腐蚀和磨损的机制。研究发现,加工条件对合金的微观结构以及耐腐蚀和耐磨性有着深远的影响。由于层状结构,腐蚀和磨损的起始和发展都表现出各向异性行为。本综述的见解可作为最先进技术的参考,并有助于开发未来具有更好耐腐蚀和耐磨性能的增材制造合金。[DOI:10.1115/1.4050503]
从BCP中自我组装了多种光子架构,范围从远程有序结构(例如,紧密包装的胶束,[4]六角形圆柱体,[5] Double Diamond,[6] [6]甲状腺,[7] gyroids,[7] [7] [7]立方体和相关的网络[8],例如phots Systems,以及玻璃,以及玻璃,以及玻璃,以及范围的距离,又有效果,又是镜头。[9]然而,在过去的二十年中,大多数研究集中在线性和刷子块共聚物(分别是LBCP和BBCP)中的层状结构上,如图1所示。此纳米结构很喜欢,因为它既简单又能作为一维光子多层层,它提供了最佳的光学性能(即来自最小尺寸的最大反射率)。虽然先前的评论总结了制造策略和基准的光学性能,但[2,10]从所采用的聚合物库的角度来看,该领域中没有概述。从这个角度来看,我们对光子多层膜和粒子的归类和系统分析,并通过从材料角度强调当前的挑战和局限性,我们
由于其优异的光学、电子和物理特性以及更好的可控物理尺寸调整,它填补了这一空白。此外,二维/二维范德华异质结构的层状结构性质最近引起了广泛关注。它们具有可调电子带隙、光吸收、高效的电荷分离和传输、耦合效应和低量子约束等有趣特性。12,14 – 17 Janus TMDs 材料与传统 2D 材料不同,引起了人们的浓厚兴趣。Janus TMDs 材料具有不对称晶体结构、固有平面外极化和压电性等独特特性。 18 – 23 2D/2D 范德华异质结构耦合非常重要,它会产生各种有趣的效果 24,25 这是一种结合不同 2D 材料各种特性的有用方法 26 以促进光伏技术创新。 27 通过将两个单层堆叠在一起,可以根据此优势和可调特性构建 MXO/MoX 2 异质结构。 28
将孔隙度引入铁电陶瓷可以降低有效的介电常数,从而增强直接压电效应产生的开路电压和电能。然而,纵向压电系数的减小(D 33)随着孔隙率的增加,目前限制了可以使用的孔隙率范围。通过将排列的层状孔引入(Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3中,本文在D 33中表现出与其密集的对应物相比,D 33中的22–41%增强。这种独特的高D 33和低介电常数的独特组合导致了明显改善的电压系数(G 33),功能收获(FOM 33)和机电耦合系数(k 2 33)。证明改进特性的基本机制被证明是多孔层状结构内的低缺陷浓度和高内极化场之间的协同作用。这项工作为与传感器,能量收割机和执行器相关的应用的多孔铁电剂设计提供了见解。
摘要。ZnO 纳米粒子 (NPs) 用于光学、电子、传感、激光、光催化装置等。这些应用不仅依赖于形貌,还依赖于尺寸,可通过表面导向剂进行定制。在本研究中,我们研究了 4 个带有尿素/硫脲基团的三足配体(即 1、2、3 和 4)对表面改性 ZnO NPs(即 1Z、2Z、3Z 和 4Z)形貌的影响,这些配体分别在室温(30-40 C)碱性条件下合成。配体用于在室温下获得具有各种形貌的表面改性 ZnO。 1Z、2Z、3Z 和 4Z 分别观察到延伸的六边形纳米棒(* 2-3 微米长度和 * 400 纳米宽度)、层状(薄片自组装形成层状结构)、多分散盘状[微米级(2-3 微米)和纳米级(300-400 纳米)颗粒和纳米棒(1-1.5 微米长度和 130-165 纳米宽度)状形态。1Z 纳米棒具有尖端,而 4Z 纳米棒具有半圆形端部。已经通过罗丹明 B 染料降解评估了这些表面改性 ZnO NP 的光催化研究。
摘要。摩擦学成分仅占整个航天器的一小部分,但它们通常会导致部分或完全破坏航天器的失败。空间应用中使用的机械组件必须承受极端和严重的环境条件,例如非常高或非常低的低温温度,高真空,腐蚀性元素和辐射。MOS 2是空间应用中使用最广泛的润滑材料。它具有层状结构,并在层内具有强大的共价键,同时又弱van der Wall的层间键,从而使晶体在平行于基础平面的方向上易于剪切,因此充当良好的固体润滑剂。在这项研究中,使用物理蒸气沉积(PVD)沉积了MOS 2的薄膜纳米尺度涂层。使用的PVD技术是RF磁控溅射过程。使用X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和拉曼光谱进行材料表征。根据结果,开发的MOS 2纳米涂层具有多晶结构,其基础平面垂直于底物表面。
摘要:热电材料早已被证明能有效地将热能转化为电能,反之亦然。自从半导体被用于热电领域以来,人们做了大量工作来提高它们的效率。它们的热电物理参数(塞贝克系数、电导率和热导率)之间的相互关系需要特殊的调整,才能最大限度地提高它们的性能。在开发热电性能的研究中,已经报道了各种方法,包括掺杂和合金化、纳米结构和纳米复合。在不同类型的热电材料中,层状硫族化物材料是具有独特性能的独特材料。它们具有低的自热导率,并且它们的层状结构使它们易于修改以提高其热电性能。在这篇综述中,提供了热电概念的基本知识以及提高性能系数的挑战。文中简要讨论了不同组层状硫属化物热电材料的结构和热电性能。文中还介绍了文献中用于提高其性能的不同方法以及该领域的最新进展。文中重点介绍了石墨烯作为层状硫属化物材料基质的有前途的纳米添加剂,并展示了其对提高其性能系数的影响。
类囊泡,又称非离子表面活性剂囊泡,是一种小型层状结构,由烷基或二烷基聚甘油醚类非离子表面活性剂与胆固醇结合,然后在水基溶液中水合而成。这些囊泡系统类似于脂质体,可用作两亲性和亲脂性药物的载体。类囊泡的生产工艺源自脂质体技术。基本制造方法保持不变,其中脂质相由水相水合。脂质相可以由纯表面活性剂或表面活性剂和胆固醇的组合组成。类囊泡有效地解决了与药物不溶性、不稳定性、生物利用度不足和快速降解相关的挑战。类囊泡的两亲特性结合了亲水性和亲脂性,增强了其包封亲水性或亲脂性药物的能力。胆固醇经常被用作成分之一。保持囊泡结构的硬度。本文讨论了囊泡的基本要素,包括其结构成分、制造方法及其在不同疾病中的用途。