汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙1 IPO-PORTO研究中心(CI-IPOP)/RISE@CI-IPOP(健康研究网络),葡萄牙PORTO(IPO-PORTO)/PORTO COMPO CAMPORAGIES CANCE RAQUEL SERUCA(PORTO.CCC RAFEL SERUCA,PORTO,PORTUGAL,PORTUGAL,PORTUGAL; 2葡萄牙波尔图大学医学与生物医学科学学院Abel Salazar(ICBAS); 3芬兰图尔库大学生物医学研究所和药品研究实验室; 4 Turku Bioscience,Turku University andÅboAkademi大学,芬兰Turku; 5 Infumes Research旗舰店,芬兰图尔库大学,芬兰特区; 6葡萄牙波尔图市费尔南多·佩索阿大学卫生学院; 7葡萄牙波尔图(IPO-porto)免疫学系,葡萄牙波尔图; 8葡萄牙波尔图(IPO-porto),葡萄牙波尔图的葡萄牙肿瘤学研究所手术系; 9 Glycomatters Biotech,Espinho,葡萄牙
摘要:必须控制滑移迁移,以保持柔性包装的性能和质量。基于无机的抗块材料可用于控制滑动迁移。本文报道了抗块类型对抑制滑移迁移对聚乙烯单层膜的影响。用三种不同的抗块添加剂(即滑石,天然二氧化硅和合成二氧化硅)以及灰泥酰胺制成了一系列制剂。光学性质(雾兹)和摩擦特性(COF)以评估膜特性,因为在存在抗阻滞添加剂的情况下滑动迁移的发展。通过SEM-EDX进行了抗块材料的表征,通过GC-MS检查滑动添加剂类型,而FTIR分析了表面上的滑动含量。结果表明,在七天后,合成二氧化硅抗块的COF可达0.095,薄膜表面上有痕量丘疹含量为394 ppm,这是其他类型的抗块中最低的抗块。合成二氧化硅抗块上较小的粒径和较高的二氧化硅含量导致更好的摩擦特性,这是限制陶瓷酰胺迁移到膜表面的良好障碍。
根据混合规则) /()(2 1 2 2 1 1 H H y H y H y H y H y h Y y,其中i y H是厚度,< /div> < /div>
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
©2022 ExxonMobil。exxonmobil,ExxonMobil徽标,互锁的“ X”设备以及此处使用的其他产品或服务名称是ExxonMobil的商标,除非另有说明。如果没有ExxonMobil先前的书面授权,则可能不会分发,显示,复制或更改。在范围内,ExxonMobil授权分发,显示和/或复制本文档,只有在文档未更改和完成时,该用户才能这样做,包括其所有标题,页脚,下注者,免责声明和其他信息。您不得将此文档复制或在网站上全部或部分复制。exxonmobil不能保证典型(或其他)值。本文包含的任何数据都是基于对代表性样本的分析而不是实际产品的分析。本文档中的信息仅与任何其他产品或材料合并时,仅与命名产品或材料有关。我们将信息基于被认为是可靠日期可靠的数据,但我们没有代表,保证或以其他方式表示明确或隐含的保证,具有特定目的的适销性,适用性,免受专利侵权,适合性,准确性,准确性,可靠性或此信息或产品,材料,材料,材料,材料或过程或所描述的所描述的过程。用户对所有使用材料或产品的使用以及其感兴趣领土上的任何过程都负责。我们对直接或间接遭受或与使用或依赖本文档中任何信息有关的任何损失,损害或伤害的责任明确承担责任。本文档不是对任何非前代莫比尔产品或过程的认可,我们明确否认任何相反的含义。术语“我们”,“我们的”,“埃克森美孚产品解决方案”和“埃克森美孚”都用于方便,并且可能包括任何一个或多个埃克森美孚产品解决方案公司,埃克森美孚公司,或任何直接或间接的分支机构。
摘要:为了在电子封装领域引入新的键合方法,进行了理论分析,该分析应提供有关反应多层系统 (rms) 产生足够的局部热量以用于硅片和陶瓷基板之间连接工艺的潜力的大量信息。为此,进行了热 CFD(计算流体动力学)模拟,以模拟 rms 反应期间和之后键合区的温度分布。该热分析考虑了两种不同的配置。第一种配置由硅片组成,该硅片使用包含 rms 和焊料预制件的键合层键合到 LTCC 基板(低温共烧陶瓷)。反应多层的反应传播速度设置为 1 m/s,以便部分熔化硅片下方的焊料预制件。第二种配置仅由 LTCC 基板和 rms 组成,用于研究两种布置的热输出之间的差异。 CFD 模拟分析特别侧重于对温度和液体分数轮廓的解释。进行的 CFD 热模拟分析包含一个熔化/凝固模型,该模型除了模拟潜热的影响外,还可以跟踪焊料的熔融/固态。为了为实验研究的测试基板设计提供信息,模拟了 Pt-100 温度探头在 LTCC 基板上的实际行为,以监测实验中的实际键合。所有模拟均使用 ANSYS Fluent 软件进行。
25 请参阅补充信息以了解 (I) 对退火后的 Pt/Co/Gd 堆栈进行的 SQUID M(T) 测量分析;(II III) 对在不同 Ta 下退火的样品进行多达 10 个后续激光脉冲的测量;(III) 对具有不同 Ta 的 Pt/Co/Gd 堆栈进行的脉冲能量相关的 AOS 测量;(IV) 按正常比例绘制的 DW 速度与 Hz 的关系;以及 (V) 在退火后的 Pt/Co/Gd 堆栈上进行的 HDMI 测量。