0900 - 1030 1030 - 1100 1100 - 1230 2024 年 3 月 2 日 讲座 茶歇 讲座 2024 年 3 月 9 日 讲座 茶歇 讲座 2024 年 3 月 16 日 讲座 茶歇 讲座 2024 年 3 月 23 日 讲座 茶歇 讲座 2024 年 3 月 30 日 讲座 茶歇 实验 2024 年 4 月 6 日 讲座 茶歇 讲座 2024 年 4 月 13 日 讲座 茶歇 讲座 2024 年 4 月 20 日 讲座 茶歇 讲座 2024 年 4 月 27 日 讲座 茶歇 讲座 2024 年 5 月 4 日 现场参观 + 演示 茶歇 案例研究 2024 年 5 月 11 日 案例研究 茶歇 案例研究
• 只有通过电表客户端的互连为客户场所提供能源的新的合格太阳能光伏设备才有资格获得奖励。 • 该系统通过 Oncor 永久电表连接到电网,并符合 Oncor 互连协议的标准。 • 系统方位角必须介于 67.5 度和 292.5 度之间,经 Oncor 检查验证。 • 该系统在计划生产期间安装,直到项目获得批准并为该特定项目预留资金后才开始施工。 • 住宅系统仅由计划中获批准的参与服务提供商安装。客户自行安装的系统不符合该计划的资格。 • 住宅系统的安装容量必须在 3 kW DCSTC 1 和 15 kW DCSTC 之间,但总安装容量不能超过 15 kW DC。安装容量超过 15 kW DC 的项目将被取消,并且不符合奖励资格。任何例外情况都必须提交给计划经理并获得 Oncor 管理层的批准。 • 商业系统规模必须介于 10 kW DCSTC 容量和 450 kW DCSTC 之间,或 DC 输出小于或等于过去 12 个月内场地最大需求的 75%(PM 保留调整任何项目此百分比的权利)。 如果发现项目安装容量超过 450 kW DC,则将被取消,并且没有资格获得奖励。 任何例外情况都必须提交给项目经理并获得 Oncor 管理层的批准。 • 该系统采用普遍接受的施工方法安装,并符合所有当地和州的规范要求。 • 已有太阳能电池阵列的场地没有资格参加该计划。 • 从 2024 年开始的其他商业太阳能项目标准 - 任何商业太阳能项目必须满足以下一个或多个标准才有资格获得奖励:
作为其科学文献服务的一部分,NLM提供了对各种文章的访问权限。请注意,在NLM数据库中包含并不意味着与NLM或美国国立卫生研究院的内容认可或同意。了解更多信息:PMC免责声明| PMC版权通知。**倍感**嗜好是一种眼睛状况,通常在孩子疲倦,压力或患病发作时,一只眼睛倾向于向上指向。当融合的刺激不足时,会发生这种情况,从而使一只眼睛的视线比另一只眼睛更高。如果偏差低于另一只眼,则称为垂体。**嗜好的类型***左phoria(l/r):左眼的视线与另一只眼睛向上偏离。*右心(R/L):右眼的视力与另一只眼睛向上偏离。**嗜好的原因**原因是各种各样的原因,包括先天性和可收到的条件。在儿童中,由于其对双眼视力发展的损害很少。在成年,创伤,梅毒,痛风和病理状况可能会引起它。过去或现在的常见疾病的历史经常随之而来。**倍感症状**最常见的症状是向上的眼动,可能并不总是存在。其他症状包括: *双视力 *视力模糊 *似乎在页面上移动的单词 *眼神 *头痛 *难以集中 *与流利的阅读心脏的困难是一种条件,在这种情况下,当双眼视力受到破坏时,一只眼睛会向上偏离,与表现出的斜视相同,总是存在。它通常是潜在的,可能会导致诸如需要注意的任务期间眼睛疲劳,头痛和视力模糊之类的症状。一项全面的眼科检查,其覆盖式测试诊断等测试。了解这种情况对于有效的治疗策略至关重要,因为它会影响生活质量。传统治疗方法包括带有棱镜的矫正镜头,以使每只眼睛看到的图像和减轻症状相结合,在某些情况下是手术干预。棱镜眼镜是根据个人需求定制的,而标准纠正镜有助于提高视力并减少因折射率重大错误而引起的压力。视觉治疗是另一个关键组成部分,由结构化练习组成,这些练习可以改善眼睛肌肉协调和双眼视力控制。视力疗法的关键组成部分包括眼部肌肉运动以增强眼外肌肉和融合训练,以将两只眼睛的图像结合到单一相干图像中。嗜好的症状可能包括双视力和眼睛应变。建议在近乎阅读或进行近距离工作等近乎任务中提高视力,建议进行住宿和融合培训练习。如果该病情严重或对非手术治疗没有反应,则可以考虑手术。斜视手术调节眼部肌肉张力以更好地排列,通常由专门从事斜视手术的眼科医生进行。手术通常保留在保守措施失败或症状大大损害视力和生活质量的情况下。定制视力疗法也可用于管理此情况。目标是实现更好的眼对准,减少症状并改善双眼视力。为了管理心疗法,鼓励患者改变自己的生活方式,并采取支持措施,例如在视觉任务期间保持足够的照明,定期休息,促进良好的视觉卫生,例如保持安全距离与屏幕的安全距离以及使用适当的姿势。与眼保健专业人员的定期随访有关跟踪状况和调整治疗计划至关重要。医疗技术的最新进展和对嗜好的了解导致了新的治疗方法,为改善结果提供了新的希望。这些创新旨在为患者提供更有效,方便和长期的解决方案,以管理其状况。棱镜技术的进步导致高清棱镜提供了更清晰的视野和更好的对准,减少了视觉扭曲和不适。镜头制造业的创新导致了蓝光过滤镜头和数字屏幕适配器,从而减轻了由于长时间使用屏幕的症状。这些技术减少了眩光,改善对比度并改善整体视觉舒适感,使患者更容易在数字环境中管理phoria。虚拟现实(VR)和增强现实(AR)技术正在通过为患者提供沉浸式和互动练习来改变视力疗法。这种方法使视力疗法更容易访问和方便。这些非侵入性方法可以改善大脑对眼睛比对和双眼功能的控制。基于VR的程序通过实时反馈改善了眼部肌肉协调和双目功能,而AR技术在模拟现实世界情景的各种环境中提供了互动练习。研究人员正在研究神经调节技术,例如经颅直流电流刺激(TDC)和经颅磁刺激(TMS),以增强心phoria的视觉治疗结果。先进的眼睛跟踪技术已得到显着改善,通过精确衡量未对准和跟踪治疗进度,可以更有效的治疗计划。此数据允许个性化方法并跟踪干预功效。基因疗法和再生医学等新兴领域通过在其分子水平上解决过度晶体来承诺。干细胞疗法在再生受损的眼组织,可能纠正长期未对准的情况下显示出了希望。过度的患者可能会从这种治疗中受益,从而增强肌肉和神经途径的生长。随着个性化医学的进步,医疗保健提供者可以根据基因组成和视觉特征制定量身定制的计划。遗传测试有助于确定促成心疗法的特定因素,从而实现靶向干预措施。生物特征分析使用先进的成像技术来评估每个患者的独特视觉特征,从而指导选择纠正镜,视力疗法或手术干预措施。
在多源游戏期间的EEG Hyperscaning提供了研究各种范式下社交互动的大脑特征的机会。在这项研究中,我们旨在表征在协作和竞争激烈的Alpha神经反馈游戏中,游戏策略的神经特征和基于阶段的功能连接模式。二十对没有密切关系的参与者参加了三个会议,其中包括使用相对Alpha(RA)功率作为控制信号的协作或竞争性多用户神经反馈(NF),具有相同的图形用户界面。合作的二元组必须将其RA保持在彼此的5%之内才能获得一个分数,而如果他们的RA比对手的RA高出10%,则竞争性二元组成员得分。Interbrain同步仅在游戏期间存在,但在基线期间不存在协作或竞争性游戏。频谱分析和脑之间连接性表明,在协作游戏中,具有较高静止状态alpha内容的玩家在调节其RA以匹配其合作伙伴的玩家更加活跃。此外,互连性是theta和alpha频段中二元组的同源大脑结构之间最强的,表明计划和社会交流的程度相似。竞争游戏强调了能够放松并以这种方式保持RA的参与者与那些没有成功的方法的参与者之间的差异。我们表明,在基于多人游戏非语言NF的游戏中,获胜策略取决于游戏规则和对手的行为。对脑之间的连接的分析显示,额叶区域在失败者中的参与度,但没有在获胜者中,这表明FORMERS试图进行心理和应用可能适合常规游戏的策略,但不适合基于Alpha Neurofackback的游戏。在物理世界中取得成功游戏的心理策略可能不足以基于NF的游戏。
本文档提供了临时人员指导(ISG),以帮助美国核监管委员会(NRC)员工审查非灯水反应堆(非LWR)设计的建设和运行申请,包括电力和非电力反应堆。本文档中的指南确定了员工审查领域,这对于寻求使用美国机械工程师协会(ASME)锅炉和压力容器代码(ASME代码)的材料可能是必需的,这是“核设施组件建设规则的规则”,第5区第5级,“高温反应堆”,“高温反应堆”(IIII-5节”(IIII-5)(ASME,2017)。III-5节指定了机械性能和允许应力,用于设计高温反应器(HTRS)中的组件。但是,如III-5节HBB-1110(g)所述,ASME代码规则没有提供评估由于腐蚀,传质现象,辐射效应或其他物质不稳定性而导致使用的恶化的方法。此ISG确定了员工应将其视为对非LWR应用程序评估的信息,以审查适用的设计要求,包括环境兼容性,资格和监视计划,用于安全 - 重要的结构,系统和组件(SSC)。审查资格和监视计划所需的实际信息将取决于许多因素,例如植物设计,组件的重要性,特定环境以及在给定领域的研究成熟度。员工应考虑到《联邦法规法规》第10条(10 CFR)第10部分(10 CFR)第50部分,“生产和利用设施的国内许可”,以及针对设计认证的非LWR申请,合并许可,标准设计批准或制造10 CFR第52部分“许可”,“核工厂”,“核工厂”,“核工厂”,认证,认证,和批准的核心批准''',核心,认证,批准,和制造效力。
摘要 目的:评估结合机器学习 (ML) 方法准确预测术后前房深度 (ACD) 是否能提高现有人工晶状体 (IOL) 计算公式的屈光预测性能。方法:密歇根大学凯洛格眼科中心收集了 4806 名白内障患者的数据集,并将其分为训练集(80% 的患者,5761 只眼睛)和测试集(20% 的患者,961 只眼睛)。使用先前开发的基于 ML 的方法根据术前生物测量预测术后 ACD。使用回归模型将这种基于 ML 的术后 ACD 集成到新的有效晶状体位置 (ELP) 预测中,以重新调整四个现有公式(Haigis、Hoffer Q、Holladay 和 SRK/T)中的每一个的 ML 输出。使用测试数据集比较了具有 ML 修改的 ELP 的公式的性能。通过屈光预测中的平均绝对误差 (MAE) 来衡量性能。结果:当用原始 ELP 和 ML 预测的 ELP 的线性组合替换 ELP 时,测试集中的 MAE ± SD(以屈光度为单位)为:Haigis 为 0.356 ± 0.329,Hoffer Q 为 0.352 ± 0.319,Holladay 为 0.371 ± 0.336,SRK/T 为 0.361 ± 0.331,明显低于原始公式的 MAE ± 0.328:Haigis 为 0.408 ± 0.337,Holladay 为 0.384 ± 0.341,SRK/T 为 0.394 ± 0.351。结论:使用更准确的预测术后 ACD 可显著提高现有四种 IOL 度数公式的预测准确性。
也已经开发出各种测量技术和设备来研究大脑功能,主要是脑电图,fMRI(功能磁共振成像),PET(正电子发射断层扫描)和MEG(磁性磁通仪)(表1)。 Near-infrared Spectroscopy (fNIRS), which allows for non-invasive measurement of brain functions using highly biotransmitting near-infrared light, has recently become a new Japanese brain function measurement technique, and compared with other measurement methods, it is a technology that is rapidly expanding its application as a highly flexible measurement method, with several excellent features, such as less restraint to the subject.另一个主要特征是FNIRS与其他测量方法具有高亲和力,并且能够同时进行测量。