副本编号33 - 美国海军上校 C. K. Tooke,船舶局 - 主席副本 NC。34 - 美国海军上校 R. A. Hinners,David Taylor Moiel Basin 副本编号35 - Corclr,R.H, Lauhert,美国海军船舶局 副本编号23 - Ccdndr.R.D. Schmidtman,美国海岸警卫队,美国海岸警卫队总部,副本编号。36 - W. G. Frederick,美国海事委员会副本编号。37 - Hubert Kempel,陆军运输部办公室主任副本编号。36- I. R. Kramer,海军研究办公室“副本 IJo.21 - Mathew Letich,美国航运局副本编号。22 - Jsmes MCIntosh,美国海岸警卫队副本编号。39 - V. L. RUSSO,LJ.S.Laritine 委员会副本编号26 - R. E, Wiley,英国海军副本编号海军副本编号27 - J. L. Nilson,美国航运局副本编号16 - Finn Jonassen,联络代表,NRC 副本编号40 - E. H, Davidson,AISI 联络代表,副本编号 41 ~~~W.Paul Gerhart,AISI 联络代表,副本编号25 - ‘jm.Spraragen,WRC 联络代表
本文的目的是介绍由高屈服钢 S690 QL 制成的移动平台支撑结构的 MAG 焊接参数选择研究结果。这种钢的符号含义[7]: • S:结构钢, • 690:最小屈服强度(690 MPa), • Q:淬火和回火, • L:低缺口韧性试验温度。高屈服强度钢由于其屈服强度高,在土木工程和运输工具建造中的应用越来越多[1-2]。该组钢的优势在于相对伸长率可达 14% 左右,是 AHSS 组高强度钢伸长率的两倍 [3-4]。建议在焊接屈服强度较高的钢材时将线能量限制在3.5kJ/cm的水平[5],并进行预热。根据焊接板厚的增加,预热温度也应相应提高。制造商没有提供有关选择此类钢的预热温度的原则的信息[7]。本文决定选择最合适的 S690 QL 钢(典型的屈服强度增加的钢)焊接参数,以使接头在低温下具有最佳的冲击强度。
SSC-29,应用爆炸试验评估高屈服强度钢的冲击性能,第一部分:高屈服强度钢直接爆炸试验技术的初步研究,作者:A. Muller、WG Benz 和 WA Snelling。第二部分:爆炸载荷下钢板断裂的理论研究,作者:E. Saibel。1949 年 7 月 13 日。
SSC-29,应用爆炸试验评估高屈服强度钢的冲击性能,第一部分:高屈服强度钢直接爆炸试验技术的初步研究,作者:A. Muller、W. G. Benz 和 W. A. Snelling。第二部分:爆炸载荷下钢板断裂的理论研究,作者:E. Saibel。1949 年 7 月 13 日。
SSC-29,应用爆炸试验评估高屈服强度钢的冲击性能,第一部分:高屈服强度钢直接爆炸试验技术的初步研究,作者:A. Muller、WG Benz 和 WA Snelling。第二部分:爆炸载荷下钢板断裂的理论研究,作者:E. Saibel。1949 年 7 月 13 日。
SSC-29,应用爆炸试验评估高屈服强度钢的冲击性能,第一部分:高屈服强度钢直接爆炸试验技术的初步研究,作者:A. Muller、WG Benz 和 WA Snelling。第二部分:爆炸载荷下钢板断裂的理论研究,作者:E. Saibel。1949 年 7 月 13 日。
本报告提供数据和分析,以支持在造船业中接受高强度钢中的未接合焊缝。由 HSLA-100 钢板(最低屈服强度为 690 MPa)和横向坡口焊缝进行的宽板拉伸试验表明,适度欠匹配的接头(实际焊缝屈服强度比实际底板屈服强度低 12%)可以实现与过度匹配焊缝一样高的强度和延展性。欠匹配 18% 至 28% 的焊缝表现出全强度,但延展性最小。相对粗网格弹塑性有限元分析充分再现了实验中观察到的行为。制备了宽板试样,在适度低匹配和高匹配焊缝中都含有各种受控的缺陷。这些缺陷试样表现出卓越的性能,适度低匹配焊缝和高匹配焊缝的结果之间没有一致的差异。当承受剪切载荷时,低匹配高达 25% 的坡口焊缝可达到 HSLA-100 板所需的最小剪切强度,并具有出色的延展性。为便于使用具有最佳焊缝金属性能的高强度钢,给出了各种接头的设计、有限元分析、焊缝填充金属选择和焊接程序指南和说明。
图 3 – 传统、L-PBF 和 L-DED 处理的 Fe-Co 的屈服强度和延展性特性与特定工艺的名义冷却速率的关系图。