摘要 — 本研究探讨了孔隙率对采用电弧增材制造 (WAAM) 生产的超级双相不锈钢 (SDSS) 弯曲疲劳强度的影响。横截面分析显示,SDSS 壁的平均宽度为 5.8 毫米,比多孔 SDSS (SDSS P) 壁宽约 1 毫米,这归因于较低的打印速度和不同的保护气体。X 射线成像证实 SDSS 材料中没有孔隙,但显示 SDSS P 材料中存在大量均匀分布的孔隙,直径从 0.4 到 1.1 毫米不等。垂直方向的硬度测量显示两种材料的硬度水平一致,SDSS 的平均值为 312 HV,SDSS P 的平均值为 301 HV。这种均匀性表明,当孔隙率不是影响因素时,基材强度相似。然而,机械测试显示出显著差异:SDSS 的屈服强度 (YS) 比 SDSS P 高 15.4%(630 MPa 对 546 MPa),极限抗拉强度 (UTS) 为 819 MPa,而 SDSS P 为 697 MPa。最值得注意的是,SDSS 的伸长率为 37.4%,比 SDSS P 高出约 118.7%,表明由于孔隙率导致延展性显著降低。疲劳测试表明 SDSS 的疲劳极限为 377 MPa,明显高于 SDSS P 的 152 MPa 极限。发现孔隙的存在会急剧降低疲劳强度。断口分析表明,SDSS P 中的疲劳裂纹源自孔隙。总体而言,研究结果表明孔隙率显著降低了 WAAM 制造的 SDSS 的机械性能,使其不太适合需要高强度和延展性的应用。
摘要:Stelite-6/Inconel 718功能梯度材料(FGM)是一种耐热的功能梯度材料,在超高温度(650-1100℃)下具有出色的强度性能(650–1100°C),因此在航空通道和航空航天工程中具有潜在的应用,例如发动机涡轮机。为了研究初始温度对激光金属沉积(LMD)功能梯度材料(FGM)的微结构和性能的影响,本文使用LMD技术在两个不同的初始温度下形成Stelite-6/Inconel 718 FGM 718 FGM:室温和预加热(300℃)。分析内部残留应力分布,元素分布,微结构,拉伸特性和微硬度的100%Stelite-6至100%Inconel 718 FGM在不同初始温度下形成的10%梯度,在不同的初始温度下形成。实验结果证明,高初始温度有效地改善了内部残留应力的不均匀分布。预热减慢了熔体池的固定时间,并促进了气体的逃脱以及熔体池中元素的均匀扩散。此外,预热可降低梯度层之间的键合面积,从而增强层之间的冶金键合特性并改善拉伸性能。与在室温下形成的Stellite-6/Inconel 718 FGM相比,平均屈服强度,平均拉伸强度以及在300°C形成的Stellite-6/Inconel 718 FGM的平均伸长率增加65.1 MPa,97 MPa,97 MPa和5.2%。但是,高初始温度将影响材料的硬度。在300°C时形成的星状-6/Inconel 718 FGM的平均硬度比在20°C下形成的stellite-6/Inconel 718 FGM的平均硬度低于26.9 hv(Vickers硬度)。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 b 威斯康星大学麦迪逊分校材料科学与工程系,美国威斯康星州麦迪逊 53706 c 威斯康星大学麦迪逊分校格兰杰工程研究所,美国威斯康星州麦迪逊 53706 ⸸ 通讯作者 摘要 拓扑优化 (TO) 与增材制造 (AM) 的结合有可能彻底改变现代设计和制造。然而,制造优化设计的实例很少,而经过实验测试的设计实例就更少了。缺乏验证再加上 AM 工艺对材料性能的影响,使我们对工艺-微观结构-性能关系的理解存在差距,而这对于开发整体设计优化框架至关重要。在这项工作中,使用定向能量沉积 (DED) 和选择性激光熔化 (SLM) 方法对功能设计进行了拓扑优化和制造。这是首次在 TO 背景下直接比较这些 AM 方法。在单轴位移控制拉伸载荷下,研究了 SS316L 和优化部件在制造和热处理条件下的机械性能,并与有限元建模 (FEM) 预测进行了比较。优化样品在试件中提供了压缩和拉伸载荷区域。实验结果表明 FEM 预测较为保守。微观结构分析表明,这种差异是由于增材制造过程中形成的细化微观结构,可增强高应力区域的材料强度。此外,由于晶粒尺寸更细化和位错结构更密集,SLM 样品表现出比 DED 样品更高的屈服强度。TO 结果对 AM 方法、后处理条件和机械性能差异很敏感。因此,通过结合微观结构特征来考虑制造部件中的局部微观结构变化,可以最好地优化用于 AM 框架的 TO。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
摘要 - 在体内种植的人工部分的材料选择过程一直是至关重要的程序。植入物的生产和施工要求将涉及从机械规格到医疗限制的各种考虑。从机械的角度来看,需要植入物表现出尽可能近的骨骼的机械性能,以降低失败的风险并为患者提供高水平的舒适度。假肢必须拥有的最大胆的医学特征是生物相容性存在的质量;意思是,它们必须被人体的生物体接受。In this paper, five common biocompatible materials as candidates for hip prostheses production namely, 316L St Steel (cold worked, ASTM F138), Co–28Cr–6Mo (cast, ASTM F75), Ti–6Al–4V (hot forged, ASTM F620), Zirconia (ceramic, 3Y-TZP) and Alumina (ceramic, ZTA)通过加权特性的方法选择和评估,以缩小搜索范围,以找到最适合真正骨骼机械性状的候选者。进行分析,考虑了六个属性,并相互加权,即弹性模量,屈服强度,拉伸强度,疲劳强度,腐蚀速率和密度。从结果中,氧化铝和不锈钢显示出最高的性能索引,但由于所需的生物相容性的重要性,因此在实用中所需的生物相容性的重要性,排名在钴和钛合金的第四和第五位的材料分别是与该行业中最可取的选择。的确,生物相容性特征超过与真实骨骼的最高机械相似性。将得出结论,在植入物材料选择过程中,WPM不能仅仅预测最佳候选人,除非将结果与有关身体对候选材料的反应的实验数据进行比较。版权所有©2015 Penerbit Akademia Baru-保留所有权利。
12. 赞助机构名称和地址 船舶结构委员会 美国海岸警卫队 (G-MSE/SSC) 2100 Second Street, SW Washington, DC 20593 14. 赞助机构代码 GM 15. 补充说明 由船舶结构委员会赞助。由其成员机构共同资助。 16. 摘要 本研究的目的是开发通过摩擦搅拌焊接制造的 5000 系列和 6000 系列铝加筋板结构的机械屈曲破坏试验数据库,并将这些结构与通过熔化焊接制造的类似铝板在焊接引起的初始缺陷和极限抗压强度性能方面进行比较。讨论了与熔化焊接和摩擦搅拌焊接程序相关的趋势或优势。以下是这些讨论的摘要。 • 发现摩擦搅拌对接焊接铝合金的屈服强度和极限拉伸强度相当于甚至优于熔化焊接铝合金。 • 搅拌摩擦焊接引起的初始缺陷往往比熔化焊接引起的缺陷小。因此,搅拌摩擦焊接工艺在这方面的优势显而易见。• 搅拌摩擦焊接铝结构的极限强度性能比熔化焊接铝结构高 10-20%。这意味着,只要能防止分层,搅拌摩擦焊接工艺在极限抗压强度性能方面肯定优于熔化焊接工艺。• 然而,所有搅拌摩擦焊接测试结构在达到极限强度之后甚至之前都在焊接区域出现了分层。这表明,熔化焊接工艺在焊接区域的抗压强度性能方面优于搅拌摩擦焊接工艺。• 再次证实,非线性有限元法计算在很大程度上取决于所应用的结构建模技术。 17. 关键词 铝加筋板结构,极限强度,搅拌摩擦焊,熔化焊,焊接引起的初始缺陷,屈曲破坏试验,非线性有限元法计算
摘要:本文旨在确定3D打印参数的影响,例如填充密度,挤出温度,栅格角度和层厚度,对机械性能,即在果酸酸(PLA)的情况下,即在破裂的情况下,即在破裂的情况下,即最终的拉伸强度,屈服强度,弹性和伸长率。另一个目的是研究PLA的吸水,其目标是通过涂层剂最小化。使用方差分析(ANOVA)评估每个印刷参数对每个机械性能的影响。关键字:( 3D打印,PLA,机械性能,吸水,打印参数)近年来,3D打印机的使用量显着增加,并且可以预期这种趋势的延续。3D打印机现在通常用于制造各种产品,范围从休闲物品到医疗组件(Gibson等人2015a)。从所有3D打印技术中,由于大量开发和销售这种打印机及其相对低成本的公司,公众更容易获得的公众访问的技术(FDM)(Gibson等人。2015b)。为了使用FDM技术打印对象,需要定义一定数量的打印参数。由于最终产品的质量受这些参数的大多数影响,因此知道其中哪种是最有影响力的(Sood等人。2012; Anitha等。2001; Wang等。 2007; Tymrak等。 2015)。2001; Wang等。2007; Tymrak等。 2015)。2007; Tymrak等。2015)。2014; Lanzotti等。2015a; Wittbrodt等。研究人员使用了实验方法的设计(DOE),以计划实验室工作,以使结果值得信赖。DOE中有三个主要方面:因素,水平和响应。设计矩阵,这些是具有不同因素之间所有级别组合的表(Anderson等人。2016; Lanzotti等。2015a)。作为FDM定向沉积的材料,结果是具有各向异性行为的分层标本。,由于过程的方法,空气口袋形式,会影响机械性能
Krailling,德国,2024年4月30日 - EOS是添加剂制造(AM)技术,服务和材料的全球领导者,今天宣布将其EOS Aluminum Alsi10mg添加到其负责的产品组合中,并在其firtucycle®(其全球使用的聚合物材料收购计划中降低材料减少材料造成的材料浪费)以及启动。作为世界上最大的AM原始设备制造商(OEM)之一,EOS致力于最大程度地减少制造业的气候影响,而当今的公告则扩大了这一承诺。负责的EOS铝ALSI10MG EOS铝ALSI10MG是其投资组合中最受欢迎的产品之一,现在至少结合了30%的再生原料,与先前的配方相比,可实现25%CO 2 E减少。此外,新配方在加上制造的零件中保持相同的属性,特性和性能,有助于确保现有的EOS ALUMINUM ALSI10MG客户不需要要求应用程序。EOS铝ALSI10mg的规格保持不变:•化学成分标准:ALSI10MG•最终的拉伸强度:460 MPa•屈服强度:245 MPA•休息时伸长率•延长时•良好的热量和电导率良好和电导性,并具有适应性的材料,包括我们的繁殖材料,包括我们的企业的承诺,包括我们的产品,包括我们的金属生产,包括我们的金属生产,成长为我们的材料,成长,成长为我们的成果,不断增长,不断增长,成长为我们的材料,不断增长。 EOS。“我们正在努力为我们的优质金属材料创造碳足迹透明度virtucycle®采用二手聚合物材料和组件,使用100%可持续产生的能量将AM粉末转化为回收的高 -这些外部验证的数字还通过在我们的碳计算器中加入这些材料,为客户和EOS提供可持续性计划,从而为我们的客户提供透明度。” virtucycle®使用的聚合物材料收购程序现在可用EOS与Arkema公司Agiplast合作,以提供其新的Virtucycle®计划
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017