角度控制紧固 一种紧固程序,其中紧固件首先通过预先选择的扭矩(称为密合扭矩)紧固,以便将夹紧表面拉到一起,然后通过给螺母额外的测量旋转来进一步紧固。经常使用此方法将螺栓拧紧到其屈服点以上,以确保实现精确的预紧力。使用此方法可能会将短螺栓拉长太多,并且螺栓材料必须具有足够的延展性才能适应所涉及的塑性变形。由于螺栓被拧紧到屈服点以上,因此其重复使用受到限制。[ mech-3 ]
1.图 2-1:板-加强筋和 HAZ 的材料曲线 (Rigo et al.2003) ..........................8 2.图 3-1:6061 和 5083 材料中的应力-应变曲线比较.............................................13 3.图 6-1:AL5083 和 AL 6082 的应力-应变关系.............................................49 4.图 6-2:板和加强筋的热影响区 (HAZ) (Paik 2005) .............................50 5.图 6-3:加强板的有限元模型.........................................................................51 6.图 6-4:带HAZ ................................................................................51 7.图 6-5:带 HAZ 的挤压板有限元模型 ..............................................................52 8.图 6-6:应用于有限元模型的边界条件 ................................................................52 9.图 7-1:极限强度比较(FEA 结果) .............................................................................55 10.图 7-2:极限强度比较:综合性能与降低的母材性能 .............................................................................................................61 11.图 7-3:模型 11 的极限强度比较:综合性能与增加的 HAZ 性能(25% 更高的屈服强度) .............................................................................................61 12.图 7-4:强度降低与失效应力除以 HAZ 屈服强度..................62 13.图 7-5:平均失效应力下强度降低与 HAZ/基准切线模量比率.........................................................................................................................62 14.图 7-6:拉伸载荷工况屈服点比较.........................................................................................64 15.图 7-7:屈服点侧压力图.........................................................................................................68 16.图 7-8:侧压力相对于屈服点的百分比差异。组合情况 ...........................68 17.图 7-9:假设的软化区 (Paik 2005) ......................................................................................69 18.图 7-10:带软化区的板-加强筋组合横截面 (Paik 2005) .............................................................................................................................................69 19.图7-11:极限强度比较......................................................................................73
近来,对提高船舶低速柴油机效率的需求日益增加。为此,神户制钢所新开发了一种用于半组合式曲轴的廉价低合金钢。这种钢具有高屈服点和高疲劳强度,同时避免了大型锻钢产品中经常发生的淬火开裂风险。曲轴由多种钢种(包括新开发的钢)制造,并评估了从其主要部件上采集的钢件样品的材料性能。结果证实,新开发的钢具有优于传统钢的机械性能和疲劳强度。预计这种新开发的钢将应用于下一代发动机,并有助于遵守预计将变得越来越严格的环境法规。
应变和温度历史对结构钢延展性和脆性断裂起始的重要影响已在几篇早期论文中得到证实和讨论。““结果表明,在中心静态拉伸试验中,预压缺口低碳钢片将产生细小裂纹或在平均初始屈服点 10% 的应力下断裂。如果没有事先进行压缩预应变,这种钢与实验室中测试的所有其他低碳钢一样,在净截面普遍屈服之前不会断裂,尽管有最严重的缺口和低于夏比转变的温度。已经研究了冷压缩或半压缩引起的拉伸延展性的降低,包括轴向压缩钢筋 '-, ' '-l' 和反向弯曲板 ''-20 和 ~ar~:-l。 ~ 这些测试的显著结果是
在患有 HF 的患者中,肾上腺素能环路的激活会导致这些受体的过度刺激,重新分配在正常情况下不会对全身循环造成压力的体积,从而产生充血。因此,当建议使用硝酸盐等血管扩张剂时,目的是重新建立最接近静脉床原始容量的容量,并有利于全身充血的流出。如图 2 所示,在血管中心循环压缩模型中,通过降低中心静脉压力,可以优化静脉回流,从而使血液更好地从外周流向心脏。在该方案中,平均系统充盈压控制静脉系统,因此流量优化(Q)的决定因素是应激体积以及右心房压力。因此,恢复电容相当于降低系统屈服点,从而提高效率。 8
一种常用的骨科植入物是利用固定螺钉来固定前交叉韧带 (ACL) 移植物并将移植物固定到股骨和胫骨中。目前,这些螺钉由钛或生物可吸收材料制成。在这方面,生物可吸收螺钉的产生是为了克服金属螺钉引起的一些潜在问题。尽管生物可吸收螺钉容易受到一些缺点的影响,包括骨长入特性以及良好的体外和体内机械性能。ACL 螺钉的生物力学结果表明,极限失效载荷和屈服点载荷分别在 800-1500 N 和 600-1000 N 之间。此外,对体内降解行为的评估表明,ACL 螺钉在 6 个月到 2 年内几乎完全或完全吸收。然而,已证明添加骨矿物相如羟基磷灰石 (HA)、β-磷酸三钙 (β-TCP) 和碳酸钙 (CC) 可以提高这种降解速度。将双陶瓷加入纯聚合物 ACL 螺钉中可能有助于提高螺钉完全吸收后的骨成骨性,充当缓冲剂,降低产品降解导致的螺钉周围酸性,并改善 ACL 螺钉的机械性能。本文讨论了目前在骨科市场上可用于移植物固定的最新生物可吸收 ACL 螺钉。简要回顾了有关生物可吸收 ACL 螺钉的物理、生物和机械性能的文献。此外,还讨论了每种螺钉的插入技术、各种制造尺寸以及体外和体内机械性能。