摘要:巨型单层囊泡(GUV)的产生在各种科学学科,尤其是在合成细胞的发展中起关键作用。尽管存在许多用于GUV准备的方法,但经过修改的连续液滴界面交叉封装(CDICE)方法提供了简单性和高封装效率的优势。但是,该技术的一个重要局限性是囊泡的产生,具有较大的尺寸分布,无法控制所需的尺寸范围。这提出了一个关键问题:是否可以优化修改的CDICE方法以生产具有控制尺寸分布的GUV?在这项研究中,我们检查了两个实验参数的效果:CDICE室的旋转时间(T腐)和角频率(ω)在GUV的尺寸分布中。我们的结果表明,减少角频率或旋转时间将尺寸分布转移到较大的囊泡,从而实现有效的尺寸选择。这些发现得到了物理模型的进一步支持,该模型提供了对尺寸选择基础机制的见解。这项工作表明,可以通过直接调整系统参数来控制对GUV尺寸分布的控制。微调囊泡尺寸的能力为研究人员提供了一种强大的工具,用于开发可定制的用于合成生物学和相关领域的实验系统。关键字:GUV,合成细胞,CDICE,大小选择
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
脊柱为成年身体提供结构支撑,保护脊髓,并为在环境中移动提供肌肉附着。脊柱的发育和成熟及其生理学涉及整合多种肌肉骨骼组织,包括骨骼,软骨和纤维化关节,以及神经系统的神经支配和控制。人类脊柱最常见的疾病之一是青春期特发性脊柱侧弯(AIS),其特征是在健康的儿童中,青春期旁的脊柱异常的脊柱异常曲率发作。AIS的遗传基础在很大程度上未知。斑马鱼中胚胎表型的全基因组诱变筛查对了解胚胎脊柱的构建和模拟胚胎组织的早期图案的理解有助于。但是,胚胎后成熟和脊柱体内稳态所需的机制仍然很少了解。在这里,我们报告了一个小规模的前向遗传筛查的结果,用于成人可持续的隐性和主导斑马线突变,从而导致成人脊柱的明显形态异常。用N-乙基N-亚硝酸(ENU)诱导的种系突变被传输并筛选为1229 F1动物中的显性表型,随后在F3家族中繁殖到纯合性。从这些过程中,筛选了314个单倍体基因组,以影响影响总体形状的成人凹面表型。我们累计发现40个成人可行(3个显性和37个隐性)突变,每个突变导致脊柱形态发生缺陷。最大的表型组显示出幼虫发作轴向曲率,导致成人鱼类中没有椎骨发育不良的全身脊柱侧弯。对该表型组中16个突变系的成对互补测试显示至少9个独立的突变基因座。使用大规模平行的整个基因组或整个外显子组测序和减数分裂映射,我们定义了斑马鱼中几个基因座的分子身份。我们鉴定了Skolios /驱动蛋白家族成员6(KIF6)基因中的新突变,从而导致小鼠和斑马鱼的神经发育和dend依纤毛缺陷。我们还报告了Scospondin的多个隐性等位基因,以及具有血小板蛋白基序9(ADAMTS9)基因的分解蛋白和金属蛋白酶,它们在脊柱形态发生中都显示出缺陷。我们的结果提供了单基因性状的证据,这对于斑马鱼的正常脊柱发育至关重要,这可能有助于建立人类脊柱疾病的新候选风险基因座。
“这项研究强调了尽早培养健康的屏幕使用习惯的重要性,”多伦多大学社会工作因子助理教授助理教授凯尔·甘森(Kyle Ganson)博士说。“未来的研究可以帮助我们更好地了解将屏幕使用与躁狂症状联系起来的行为和大脑机制,以帮助预防和干预工作。”
细胞质动力蛋白-1(动力蛋白)电动机在细胞组织中起着关键作用,通过将各种细胞成分转移到微管的负末端。然而,关于电动机的生物合成,组装和功能多样性如何精心策划的知之甚少。为了解决这个问题,我们使用动力蛋白连接的过氧化物酶体和早期内体作为读数进行了阵列CRISPR功能丧失屏幕。从靶向18,253个基因的指南RNA文库中,回收了195个经过验证的命中,并将其解析为影响多个动力蛋白货物的人,以及效果仅限于一部分货物的那些货物。由多重图像产生的高维表型指纹的聚类揭示了与许多细胞过程有关的共同功能基因,包括几个候选核心动力蛋白功能的新型调节剂。对这些蛋白之一的机械分析,即RNA结合蛋白SUGP1,提供了证据,证明它通过维持动力蛋白激活剂LIS1的功能表达来促进货物运输。我们的数据集代表了用于研究基于微管的运输的新假设的丰富来源,以及通过我们的高内容成像捕获的蜂窝组织的其他几个方面。
未经MSCI事先书面许可,本文包含的信息(“信息”)不得全部或部分重新染色。该信息不可用来验证或纠正其他数据,以创建索引,风险模型或分析,或与发行,发行,赞助,管理或营销任何证券,投资组合,财务产品或其他投资工具有关。历史数据和分析不应作为对未来绩效,分析,预测或预测的指示或保证。任何信息或MSCI指数或其他产品或服务都不构成购买或出售的要约,或任何担保,财务工具或产品或交易策略的促销或建议。此外,没有任何信息或任何MSCI指数旨在构成投资建议或建议(或避免做出)任何类型的投资决定,并且不可能进行任何形式的投资。信息提供的信息是“原样”,并且该信息的用户假定其可能造成或允许对信息的任何用途的全部风险。上述规定不得排除或限制不适用法律不受适用法律的责任。MSCI Inc.及其任何子公司,其或其直接或间接供应商或参与信息制作或编译的任何第三方(每个人)(每个人)(每个是“ MSCI党”)使任何保证或陈述都在法律允许的最大范围内,在每个MSCI方面允许的最大范围,每个MSCI党都明确地符合所有符合人的能力,包括所有符合人的限制性,包括所有符合人的限制性,并符合保证金的范围。在法律允许的最大范围内,在任何直接,间接,特殊,惩罚性,后果(包括损失的利润)或任何其他损害赔偿的情况下,即使有可能遭受此类损害的可能性,任何直接,间接,特殊,惩罚性,后果(包括损失的利润)都不应对任何信息均不承担任何责任。
基于聚合物的SES具有足够高的离子电导率和出色的热稳定性,高环境稳定性,出色的柔韧性和可扩展的处理,其成本低。[19]基于聚乙烯(PEO)的聚乙烯。但是,它们有一些缺点:室温下的离子电导率低和氧化分解电位(低于4 V)。[20,21,22]在各种聚合物中,基于PEO的电解质是对SSB的最广泛研究的,其优势具有良好的电化学稳定性,具有LI阳极,处理性和兼容性。CE-RAMIC的固态电解质(SES)可以提供改善的电导率和电化学窗户。[23]目前,最常见的SES类是聚合物和陶瓷,例如氧化物(例如LLZO),磷酸盐(E.gnasicon),硫化物(例如Li 10 Gep 2 S 12,Li 6 Ps 5 X)和卤化物(例如Li 3含6,li 3 incl 6,li 3 ybr 6)。[2,18]在复合固体电解质(CSE)或杂交电解质的开发中,将少量(高达40 wt%)的无机活性填充剂(Perovskite,Garnet,Lisicon,Lisicon等)掺入已经广泛报道。[22,23]无机活性填充物可以在CSE的大部分区域形成连续的离子通道,并促进快速离子运输以提供更高的离子电导率,而不会构成基质的灵活性。[24]仍然有足够的空间来发展更好的CSE,以达到更高的离子连接性,而不会降低其机械性能。[25]
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于12月29日,2023年。 https://doi.org/10.1101/2023.12.28.573581 doi:biorxiv preprint