X 射线屏蔽在医学成像、核能和工业射线照相等各个领域都至关重要。传统上,铅因其出色的屏蔽性能而成为首选材料。然而,铅具有剧毒,对环境和健康构成重大风险。本综述探讨了铅在 X 射线屏蔽中的环保替代品的开发和应用。讨论了钨、铋、硫酸钡、聚合物、纳米复合材料和粘土基材料等各种材料。本综述重点介绍了这些材料的最新进展、优势和局限性,以及它们对环境的影响和成本效益。考虑到对更安全和环保选择的需求日益增加,强调了辐射防护中对可持续材料的需求。这篇全面的综述提供了对环保型 X 射线屏蔽材料未来研究和开发方向的见解,旨在指导研究人员和行业专业人士选择和应用可持续替代品。
摘要这项研究研究了几种玻璃成分作为伽马射线屏蔽物质的适用性。所测试的组合物具有不同的ZnO浓度,特别是(60-X)B 2 O 3 - 10NA 2 O —15SIO 2 –15SIO 2-5AL 2 O 3 - (x + 10)ZnO(其中x = 5、10、15和20 mol%)。测量以0.6642、1.1776和1.3343的能量水平进行,从CS 137和CO 60点源辐射,以及闪烁检测器[NAI(TL)]。我们研究了与γ辐射屏蔽相关的关键特性,确定有效原子数(z eff),电子密度(N EL),半价值层(HVL),线性衰减(μ)和质量衰减(μm)系数(μm)系数和平均自由路径(λ)。我们的结果表明,随着Zn浓度从15摩尔%上升到35 mol%,在检查中的眼镜从2.12至2.77 g/cm3变得更密集。此外,所有玻璃成分都提供了针对指定能级的伽马辐射的足够保护。µ的值从0.157上升到0.214 cm -1(0.6642 meV),从0.119升至0.160 cm -1(1.1776 meV),并从0.114 cm -1(1.1776 meV),从0.114 cm -1(1.3343 meV)上升到0.160 cm -1(1.1776 meV)。对于样品B1和B4,观察到的HVL值从4.41、5.84和6.12 cm降至3.21、4.31和4.61 cm,分别为0.6642、1.1736和1.3343 MEV。与经常使用的玻璃和混凝土样品相比,经过测试的材料中显示的屏蔽能力更高。该研究强调了这些玻璃成分作为可以掩盖伽马辐射的实用材料的潜力。
火星表面受到来自太阳和宇宙的高能带电粒子的轰击,与地球相比,几乎没有任何防护。由于航天机构正在计划对这颗红色星球进行载人飞行,因此人们主要担心的是电离辐射对宇航员健康的影响。将暴露量保持在可接受的辐射剂量以下对机组人员的健康至关重要。在这项研究中,我们的目标是了解火星的辐射环境,并描述保护宇航员免受宇宙辐射有害影响的主要策略。具体来说,我们使用 Geant4 数值模型研究了火星辐射场中各种材料的屏蔽特性,并通过 MSL RAD 的现场仪器测量验证了该模型的准确性。我们的结果表明,复合材料(如塑料、橡胶或合成纤维)对宇宙射线具有类似的响应,是最好的屏蔽材料。火星风化层具有中间行为,因此可以作为额外的实用选择。我们表明,最广泛使用的铝与其他低原子序数材料结合使用时可能会有所帮助。
由于皮质组织和心脏等其他组织会产生电磁场 (EMF),而这些组织也会通过平衡自身的内在放电产生内在电流,因此需要足够灵敏的传感器来感知微小的电位和电位差。此外,适当的屏蔽以减少外部磁干扰也至关重要。这些试验中使用了由 Mu 金属片创建的金属屏蔽来阻挡任何潜在的外部 EMF 干扰,并且之前已由 Wiginton 等人和 Brazdzionis 等人确定其在这些参数范围内可以发挥作用[3-5]。Mu 金属是一种由镍铁制成的铁磁合金,由于其高磁导率而经常用于屏蔽电子设备免受磁场影响,从而能够吸收磁能[6]。
葡萄干化字母卷。21,编号6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。 伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。具有不同组合物的玻璃样品是通过标准方法制备的。样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。分析了所获得的样品的光学特性。e OPT值的下降导致玻璃的折射率(n)值更高。但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。收到2024年3月2日; 2024年6月12日接受)关键字:光学和辐射屏蔽特性,吸收光谱拟合(ASF),辐射参数,光带隙,折射率1。介绍多年来,这些技术的进步无疑有助于人类在节省时间,精力和成本的同时完成众多任务的能力。但是,这种进步导致了对人类的健康危害。实际上,辐射的用途现在广泛用于各种目的,例如环境保护,增长促进,粮食生产,研究和医疗保健[1]。在各种应用中,例如伽马射线和X射线的医学成像或工业过程,选择合适的安全材料以保护有害辐射并确保辐射源的安全至关重要。[2]。尽管它们有许多缺点,但使用混凝土以屏蔽辐射的目的,各种低成本的常见实践。因为它们能够被塑造成不同的几何形状[3]。长时间暴露于核辐射会导致裂缝,降低密度[4]。除此之外,混凝土材料的强度可能会受到其中被困在其中的水量以及任何化学破坏构成重大挑战的影响,因为工人无法到达此类结构的内部。玻璃作为辐射屏蔽的可能材料,因为它们能够吸收γ射线和中子及其高可见性[5]。玻璃材料已被几位作者证明是有效的辐射罩。材料预防辐射的能力取决于几个因素,包括(LAC和MAC),原子数和电子密度,(MFP)等。准确评估这些参数至关重要。[6,7]。对最近文献的全面调查表明,玻璃的屏蔽和放射性特性一直是激烈调查的主题。El-Mallawany等人进行的一项研究; [8]专注于Tellurite Glass作为屏蔽的能力 *通讯作者:
网络安全威胁正在上升并不奇怪。我们对欧洲多个行业的4,000多名安全专业人员的调查验证了我们大多数人所经历的事情:许多领域的组织继续以频繁的攻击为目标。首席信息安全官(CISO)及其团队知道将会发动更多攻击。,但令人震惊的一小部分组织表示,他们已经为未来的一切做好了准备。
精确的电磁干扰 (EMI) 防护对于电子设备在自然灾害、战争和野外医疗干预等场景中的正常运作至关重要。EMI 和 RF 屏蔽材料针对每种应用量身定制,根据面积大小、空间形状和要屏蔽的频率而有所不同。军用测试规范(MIL-STD-461A 至 F)引入了额外的复杂性,例如极端温度。新电子设备和微波技术的不断涌现要求扩展高级屏蔽应用的选择。面对动态的 EMI/RF 环境,3D 打印,尤其是熔融沉积成型 (FDM ® ) 材料,可提供快速的解决方案生产。
可以特定于特定场景(或用例),但每个场景都可能需要一个新的制造过程。最终用户从一组简单的构建块中构建传感器的能力为更大的多功能性,设计灵活性和快速实现这些传感器提供了机会。离子液体(IL)是在环境温度下液体的有机盐,这些功能性溶剂作为柔性应变传感器的组成部分具有吸引力。1 - 3,5 - 7,9 - 15,26 - 29 ILS可以膨胀聚合物网络以形成离子液体凝胶(离子凝胶),11,30,31,可以与水养水凝胶具有许多相似性。7,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。 IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。 32,337,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。32,33
本研究详细介绍了东区改造后新布局的放射学评估所面临的挑战,从准备和拆除旧装置开始。然后,重点关注屏蔽结构的设计以及执行的放射学评估的驱动因素,展示了为实现与 CERN 放射区域分类兼容的即时环境剂量当量率水平而做出的苛刻约束和由此产生的妥协。改造后的东区的设计也针对残余辐射水平进行了优化。特别是,光束线元件的数量和目标区域的大小已最小化。已创建混合区,该混合区由粗光束转储与目标区物理隔离,包含次级线的大多数光束线元件,从而减少了在对光束线元件进行干预期间接收的剂量。此外,主要区域的通风系统设计为提供动态约束,设计目标是每小时设施的气密性为 1 个空气量,即使在短暂的冷却时间后,也能限制因进入而吸入的有效剂量。最后,该研究详细介绍了调试阶段的结果、运行第一年进行的测量以及持续的光束优化,以最大限度地减少瞬时辐射和残留辐射,同时满足用户的光束规格。