辐射效应对 SiC 和 GaN 电力电子器件的可靠性有着至关重要的影响,必须了解辐射效应对于涉及暴露于各种电离和非电离辐射的太空和航空电子应用的影响。虽然这些半导体表现出对总电离剂量和位移损伤效应的出色辐射硬度,但 SiC 和 GaN 功率器件容易受到单粒子效应 (SEE) 的影响,这种效应是由无法屏蔽的高能重离子空间辐射环境 (银河宇宙射线) 引起的。这种性能下降发生在额定工作电压的 50% 以下,需要在降额电压下操作 SiC MOSFET 和整流器。业界还将陆地宇宙辐射 (中子) 引起的 SEE 确定为在飞机上使用 SiC 基电子产品的限制因素。在本文中,我们回顾了对这些材料进行全面系统评估的前景和机会,以了解这些影响的起源和可能的缓解措施。© 2021 电化学学会 (“ ECS ”)。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ ac12b8]
a) 患者身份证明 b) 检查日期和 c) 成像解剖部位的侧面(右侧或左侧) 9.3.3 传达给患者和/或转诊人的报告结构和格式应标准化。 9.3.4 应通过内部验证程序检查图像和报告的质量。 9.3.5 在发送报告时,应在申请单、图像、报告和信封上确认正确的患者身份。 9.3.6 所有提供放射服务的设施都应具有对患者/护理人员/职业放射工作者/环境进行适当屏蔽的程序和设备。 9.3.7 所有放射服务都应使用 ALARA(合理最低限度)原则。 9.3.8 在紧急情况下,应提供适当的急救并安排将患者安全运送到另一设施,同时提供所需的临床/影像信息或记录。 9.3.9 意外辐射暴露/泄漏紧急情况应由合格人员按照 AERB 指南处理。 9.3.10 机构应配备适当的镇静/麻醉、临床和
从OMT药物(美沙酮或丁丙诺啡)中断奶的知识库是什么?I.从OMT断奶的基础神经生物学应基于既定方法在治疗阿片类药物成瘾的方法中。结论归因于阿片类药物成瘾的一般文献。II。 断奶的一般知识总体上是,与α-肾上腺素能药物治疗时,使用阿片类药物的逐步步骤相比产生更好的结果。 美沙酮,尤其是丁丙诺啡应该是首选。 在机构中断奶更安全,但门诊治疗可能是某些人的正确选择,尤其是在断奶的早期阶段。 在麻醉或深层镇静期间断奶没有支持。 OMT不应以强制性时间限制计划。 所有戒断症状的治疗都应在计划的遵循和进一步治疗的框架内进行。 屏蔽的情况通常是严重成瘾的最必要的,但是对于积极进取的患者来说,门诊断奶可能是成功的。 这些建议基于从Cochrane和其他数据库中得出的系统礁石的元研究,可以将其视为A级知识。 iii从重新治疗搜索中断奶的知识确定了1018个评论和4230个主要研究。 53被选为知识收集。 此外,从选定研究的参考列表中进行了12项研究。 发现的RCT大部分很小,并且在很大程度上必须在方法论上不平等,并且仅与所考虑的一些问题有关。 因此,通过分级评估知识。II。断奶的一般知识总体上是,与α-肾上腺素能药物治疗时,使用阿片类药物的逐步步骤相比产生更好的结果。美沙酮,尤其是丁丙诺啡应该是首选。在机构中断奶更安全,但门诊治疗可能是某些人的正确选择,尤其是在断奶的早期阶段。在麻醉或深层镇静期间断奶没有支持。OMT不应以强制性时间限制计划。所有戒断症状的治疗都应在计划的遵循和进一步治疗的框架内进行。屏蔽的情况通常是严重成瘾的最必要的,但是对于积极进取的患者来说,门诊断奶可能是成功的。这些建议基于从Cochrane和其他数据库中得出的系统礁石的元研究,可以将其视为A级知识。iii从重新治疗搜索中断奶的知识确定了1018个评论和4230个主要研究。53被选为知识收集。此外,从选定研究的参考列表中进行了12项研究。发现的RCT大部分很小,并且在很大程度上必须在方法论上不平等,并且仅与所考虑的一些问题有关。因此,通过分级评估知识。iii-1断奶百分比,完成的逐步降低范围从0%-100%,通常从10%-70%起,排除麻醉中的断奶研究并在设置
脑电图(EEG)分类任务由于其高应用值而引起了人们的关注。同时,语言处理领域中一般培训模型的巨大成功激发了我们挖掘EEG预先训练模型的功能。该模型有望适应各种下游任务。但是,当前的研究要么忽略EEG信号中的时间或空间域,要么仅在预训练中使用单个数据集。提出的时间空间预测(TSP)模型有效地解决了这些问题。具体来说,TSP endoer的输出用作两个任务的输入:空间预测,即屏蔽的自动编码器和时间预测,即,contrastive的预测编码。此外,为了提供更多多样化的信息,从而使下游微调受益,我们将TRAIN TSP预先在具有四个不同数量的渠道的六个大型脑电图数据集上。在三个公共下游数据集种子,种子-IV,TUEV上结果表明,TSP在不同的EEG分类任务上实现了最先进的性能。此外,根据消融实验,TSP的性能优于单域方法,即时间预测(TP)模型和空间预测(SP)模型。
辐射屏蔽的目的是将辐射治疗设备产生的有效辐射剂量降低到房间外的足够低水平。所需的有效剂量水平由地方或国家监管机构确定。所需的剂量水平通常在公共占用率(不受控制的访问)与职业占用(受控访问)方面有所不同。到达受保护位置的剂量率直接受到工作量(W)的影响,这是机器产生的辐射的度量。对于线性加速器,同中心的工作负载是在同中心处吸收的剂量率,在最大程度的吸收剂量的深度确定水中,每小时以灰色(例如,每小时,每周或一年或一年)为灰色(gy)(NCRP 2005b)。然后将同中心的工作负载归一化为距X射线目标1米(如果从X射线目标到同中心的距离不是1米),以产生屏蔽计算中使用的工作负载(W)。除了工作负载外,所需的屏蔽也是机器能量(MVS)的函数;从X射线目标(或同中心)到屏蔽点的距离;梁沿特定方向定向的时间的比例;以及所考虑的空间被认为是占用的时间的一部分。
在这份白皮书中,我们研究了一种新型的行星科学任务推进系统:一种低温氢氧推进系统(REAPS)。尽管排骨比其他化学推进系统的低温火箭发动机具有相当大的优势,但由于长期在低温推进剂的空间存储中面临的挑战,大部分都将其用于任务的发射阶段。我们表明,被动低温储存技术的新发展可以解决此问题,现在使排骨适合空间推进。排骨发动机比传统的高光发动机具有重要的特定脉冲(I SP)优势,从而减少了发射的大量行星科学航天器。排骨还提供了比传统高光发动机的其他优势,这些优势对于行星科学任务尤其重要,尤其是天体生物学兴趣场所的着陆器。这些包括“清洁”燃烧的排气,类似于仅产生水的燃料电池;可登陆的登陆;使用推进剂发电的可能性比仅使用主电池的任务允许更长的寿命任务。以及将燃料用作辐射屏蔽的可能性。我们建议对地面测试中的行星应用评估低温氢氧推进系统,包括已在MSFC,GSFC和其他地方开发的系统,从而进行了行星应用。
对军事,工业和商业应用中高质量电子和通信设备的需求不断增长,导致电子设备和系统紧凑性,从而提高了电路的复杂性。这是一种新型的挑战形式,由于反复的努力,需要对电磁辐射做出许多决定。这些电磁辐射相互干扰,并有可能破坏系统,该系统被称为电磁(EM)污染。因为它会干扰设备或传输通道的操作,因此电磁干扰是关注的关键来源。为了解决这个问题,科学和研究组织已开始为电磁干扰(EMI)屏蔽应用创建各种材料。碳长期以来一直是一种令人着迷的化学物质。碳的同素异形体,例如富勒烯,石墨,石墨烯,碳纳米管和其他改善EMI屏蔽的填充剂,对各种频带都引起了重大兴趣。最初,将多壁碳纳米管(MWCNT)和石墨烯(GNS)功能化以改善导电聚合物界面。聚苯胺/碳纳米管/石墨烯(PANI)/(MWCNT)/(GNS)使用原位氧化聚合过程合成,MWCNT的重量百分比保持恒定,而GN的重量百分比从1-3中增加,然后使用SEM和FTIR分析表征。与纯聚苯胺相比,纳米复合材料的电导率随着GN的重量增长而上升。基于碳的导电聚合物纳米复合材料表现出半
非线性光学频率转换与非线性介质相互作用以生成新频率,是现代光子系统中的关键现象。然而,这些技术的主要挑战在于难以调整在给定材料中驱动这种影响的非线性电敏感性。作为一种对光学非线性的动态控制,这很大程度上仍然局限于研究实验室,从而将其实际用作用作光谱工具。在这项工作中,我们旨在通过探索两种潜在的机制来推动具有可调非线性响应的设备的开发,以在二维材料中对二阶光学非线性进行电力。具体来说,我们考虑了两种配置:在第一个材料中,材料本质上并未表现出第二谐波生成(SHG),但这种反应是由外部场引起的;第二,外场会诱导已经表现出SHG的材料中的掺杂,从而改变了非线性信号的强度。在这项工作中,我们使用实时的AB-Initio方法研究了这两种配置,但在平面外的外部场上,包括屏蔽的电子电子相互作用中掺杂引起的变化的影响。然后,我们讨论当前计算方法的局限性,并将我们的结果与实验测量进行比较。
随着新生量子处理单元中量子比特数量的增加,第一代实验中使用连接式 RF(射频)模拟电路变得极其复杂。物理尺寸、成本和电气故障率都成为控制系统可扩展性的限制因素。我们开发了一系列紧凑型 RF 混频板来应对这一挑战,通过在具有 EMI(电磁干扰)屏蔽的 40 mm × 80 mm 4 层 PCB(印刷电路板)上集成 I/Q 正交混频、IF(中频)/LO(本振)/RF 功率电平调整和 DC(直流)偏置微调。RF 混频模块设计用于 2.5 至 8.5 GHz 之间的 RF 和 LO 频率。测得的典型镜像抑制和相邻信道隔离分别为 ∼ 27 dBc 和 ∼ 50 dB。通过在环回测试中扫描驱动相位,模块短期幅度和相位线性度通常测量为 5 × 10 − 4 (V pp /V mean ) 和 1 × 10 − 3 弧度 (pk-pk)。通过将 RF 混合板集成到超导量子处理器的室温控制系统中并执行单量子比特门和双量子比特门的随机基准测试表征,验证了 RF 混合板的运行。我们测量了单量子比特过程不保真度为 9 . 3 ( 3 ) × 10 − 4 和双量子比特过程不保真度为 2 . 7 ( 1 ) × 10 − 2 。
由于无线电信设备的指数增长,对有效的电磁干扰(EMI)屏蔽材料的需求很大。这些设备发出的电磁辐射会破坏电子设备并引起健康危害。因此,开发可以保护设备和人类免于电磁辐射的材料至关重要。在这种情况下,纳米复合材料具有巨大的优势,这是因为可以调整界面以及在纳米复合材料中使用磁性和介电成分的互补特性来增强EMI屏蔽性能。这项工作表明,通过仔细调整合成参数,我们可以生长氧化双相锂(Ferri磁性α -Life 5 O 8和顺磁性α -LifeO 2)纳米复合材料,具有不同的两个阶段相对级分。相位分数的变化和两个阶段的同时增长使我们能够控制两个相之间的接口以及纳米复合材料的物理特性,这对EMI屏蔽性能有直接影响。详细的结构(X射线衍射),成分(拉曼规格Troscopicy)和形态学(高分辨率透射电子显微镜)表征得出了,以了解合成条件对EMI屏蔽参数的影响。改进的介电和磁性性能以及样品中的界面数量增加,几乎相等的两个阶段导致最佳性能。这项工作证明了使用具有可控界面和物理性能的EMI屏蔽的双相磁氧化物纳米复合材料的重要潜力,EMI屏蔽层将来可以构成更复杂的三式系统的基础。