本文提出了一种针对移动操纵器系统(MMS)的新控制策略,该策略集成了基于图像的视觉伺服(IBVS),以解决操作限制和安全限制。基于控制屏障功能(CBF)的概念的拟议方法提供了一种解决方案,以应对各种操作挑战,包括可见性约束,操纵器关节限制,预定义的系统速度界限和系统动态不确定性。提出的控制策略是两层结构,其中第一级CBF-IBVS控制器计算控制命令,并考虑到视野(FOV)约束。通过利用空空间技术,这些命令被转移到MMS的联合配置,同时考虑系统操作限制。随后在第二级中,用于整个MMS使用的CBF速度控制器对关节级的命令进行跟踪,以确保遵守预定义的系统的速度限制以及整个组合系统动力学的安全性。拟议的控制策略提供了出色的瞬态和稳态响应,并提高了对干扰和建模不确定性的弹性。此外,由于其计算复杂性较低,因此可以在板载计算系统上轻松实现,从而促进实时操作。通过仿真结果说明了拟议策略的有效性,与常规IBVS方法相比,该结果揭示了增强的性能和系统安全性。结果表明,所提出的方法可有效解决移动操纵器系统的具有挑战性的操作限制和安全限制,使其适合于实际应用。
在不同数据集中训练的语言模型通过文本学习解锁概括。增强学习(RL)策略可以通过在序列模型的内存中获得元学习来实现相似的效果。但是,Meta-RL研究主要侧重于适应单个任务的微小变化。在不面对多任务优化挑战的情况下,很难扩展更一般的行为,而很少有解决方案与Meta-RL从大型未标记任务中学习的目标兼容。为了应对这一挑战,我们重新审视了一个想法,即多任务RL被跨不同任务的不平衡返回量表造成的不平衡训练损失所瓶颈。我们建立在基于变压器(内在)元RL的最新进步的基础上,并评估了一个简单但可扩展的解决方案,在该解决方案中,代理人的演员和评论家的目标都转换为分类术语,这些术语将从当前的回报量表中脱离优化。Meta-World ML45,多游戏Procgen,Multi-Task Popgym,Multi-Game Atari和Babyai中的大规模比较发现,这种设计在没有明确任务标签的情况下将在线多任务改编和记忆问题上取得了重大进展。
1扬兹大学健康科学中心医学成像系,中国434023; mengyun-duan@yangtzeu.edu.cn(M.D.); chen_xg@yangtzeu.edu.cn(X.C。)2中国武汉430070的惠汉省孕产妇和儿童健康医院麻醉学系; zijun_wu@whu.edu.cn 3武汉大学武汉人民医院放射科,中国430060; rm003237@whu.edu.cn 4扬兹大学健康科学中心药理学系,中国434023; liulian@yangtzeu.edu.cn 5 NUS癌症研究中心(N2CR),新加坡新加坡国立大学,新加坡国立大学,新加坡117599; phcgbc@nus.edu.sg 6 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore 7 Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore 8 Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore * Correspondence: boxuren@yangtzeu.edu.cn(B.R.); csiwl@nus.edu.sg(l.w.)†这些作者为这项工作做出了同样的贡献。
摘要:尽管数十年来治疗神经退行性疾病(NDS)的密集药物发现努力失败了,但在2000多种研究中,大约有50万患者继续进行测试,耗资1000亿美元,尽管结论得出的结论是,即使那些批准的药物也没有比安慰剂更好的效果。美国食品药品监督管理局(FDA)已经建立了多个计划,以创新稀有疾病,尤其是NDS的治疗,主要是通过鼓励新型临床试验来解决与研究大小相关的问题和采用多臂研究的问题来考虑患者辍学的问题。相反,FDA应集中于失败的主要原因:由于血脑屏障(BBB),药物到达大脑的生物利用度较差(通常最多为0.1%)。有多种解决方案可以增强进入大脑的进入,而FDA必须需要证明大脑的大量进入,作为批准研究新药(IND)应用的先决条件。FDA还应依靠除生物标志物以外的其他因素来确认功效,因为这些因素与临床使用无关。这项研究总结了如何使用于治疗ND的药物如何有效,以及FDA应如何更改其IND指南以批准这些药物。
生态和生物地理学科的。 这些包括生物地理学,植物地理学,景观遗传学,物种范围动态,多样性模式分析,入侵生物学,保护计划和气候变化影响评估(Sillero等,2021; Espindola等,2022; Sunny等,Sunny等,2022; Franklin,2023; Franklin,2023; 2023; Rubio Blanco et al and 2022;)。 这些模型使研究人员能够在空间和时间维度中分析物种分布,从而对生态过程和生物地理学机制提供重要的见解,从而随着时间和整个景观而塑造生物多样性模式(Araujo等,2019)。 通过将物种发生数据与环境变量相结合,SDM/ENM可以预测栖息地的适用性,并在各种环境场景下投射未来物种的分布,包括那些驱动的。这些包括生物地理学,植物地理学,景观遗传学,物种范围动态,多样性模式分析,入侵生物学,保护计划和气候变化影响评估(Sillero等,2021; Espindola等,2022; Sunny等,Sunny等,2022; Franklin,2023; Franklin,2023; 2023; Rubio Blanco et al and 2022;)。这些模型使研究人员能够在空间和时间维度中分析物种分布,从而对生态过程和生物地理学机制提供重要的见解,从而随着时间和整个景观而塑造生物多样性模式(Araujo等,2019)。通过将物种发生数据与环境变量相结合,SDM/ENM可以预测栖息地的适用性,并在各种环境场景下投射未来物种的分布,包括那些驱动的
抗生素使用是炎症性肠病(IBD)发展的危险因素。IBD的特征是受损的粘液层,该粘液层不会将肠上皮与微生物群区分开。 在这里,我们假设抗生素会影响粘液屏障的完整性,从而使细菌渗透性和易于症状炎症。 我们发现抗生素治疗导致结肠粘液屏障和细菌渗透到粘液层中。 Using fecal microbiota transplant, RNA sequencing followed by ma- chine learning, ex vivo mucus secretion measurements, and antibiotic treatment of germ-free mice, we determined that antibiotics induce endoplasmic reticulum stress in the colon that inhibits colonic mucus secretion in a microbiota-independent manner. 这种抗生素诱导的粘液分泌缺陷导致细菌渗透到结肠粘液层中,将微生物抗原转移到循环中,并在IBD小鼠模型中加剧溃疡。 因此,抗生素的使用可能会通过阻碍粘液产生而易于肠道炎症。IBD的特征是受损的粘液层,该粘液层不会将肠上皮与微生物群区分开。在这里,我们假设抗生素会影响粘液屏障的完整性,从而使细菌渗透性和易于症状炎症。我们发现抗生素治疗导致结肠粘液屏障和细菌渗透到粘液层中。Using fecal microbiota transplant, RNA sequencing followed by ma- chine learning, ex vivo mucus secretion measurements, and antibiotic treatment of germ-free mice, we determined that antibiotics induce endoplasmic reticulum stress in the colon that inhibits colonic mucus secretion in a microbiota-independent manner.这种抗生素诱导的粘液分泌缺陷导致细菌渗透到结肠粘液层中,将微生物抗原转移到循环中,并在IBD小鼠模型中加剧溃疡。因此,抗生素的使用可能会通过阻碍粘液产生而易于肠道炎症。
B'Abstract:磷酸锂(LFP)/石墨蝙蝠长期以来一直占据了能源电池市场的主导,预计将成为全球电池电池市场中的主要技术。但是,LFP/石墨电池的快速充电能力和低温性能严重阻碍了它们的进一步扩散。这些局限性与界面锂(LI)-OION运输密切相关。在这里,我们报告了一种基于宽的酯基电解质,该电解质具有高离子的有效性,快速的界面动力学和出色的膜形成能力,通过调节Li Salt的阴离子化学。通过采用三电极系统和松弛时间技术的分布来定量地揭示电池的界面屏障。还系统地研究了所提出的电解质在防止LI 0电镀和持续均匀和稳定的相互作用中的优势作用。LFP/石墨细胞在80 \ XC2 \ XB0 C至80 \ XC2 \ XB0 C的超速温度范围内表现出可再生能力,并且在没有寿命的情况下出色的快速充电能力。特别是,实用的LFP/石墨袋细胞在1200个循环后(2 C)(2 C)和10分钟电量在25 \ XC2 \ XB0 C时达到89%(5 c),即使在80 \ xc2 \ xb0 C.'\ xc2 \ xb0 C \ xb0 C \ xb0 C上,可实现80.2%的可靠性。
fi g u r e 1在BEC中的衰老程序表征。(a)研究设计的示意图。(b – d)衰老标记物的代表性图像p21 +(b),p16 +(c)和hmgb1-(d)在BBB的Hippocampus在老年小鼠的海马中,有无治疗。。glut1(绿色)对染色BEC和HMGB1。比例尺:( b,d)50和20μm(农作物),(c)50和25μm(农作物)。对年轻小鼠和老年小鼠的p21(b.1),p16(c.1)阳性的GLUT1 +细胞百分比和HMGB1(d.1)阳性的量化百分比。对P21(B.2),P16(C.2)阳性的GLUT1 +细胞百分比的定量和HMGB1(d.2)的阳性量化量,在有或没有鼻溶剂治疗的老年小鼠中。每个点代表了分析的所有动物分析的所有场(3,4)的平均值[:3 m =男性,3f =雌性,年龄未治疗(8 m,6f),AP(8 m,2f),DQ(7 m),dq(7 m),闭合符号,闭合符号=男性和开放式符号=女小鼠=女小鼠]。结果是平均值±SEM。(f)在老年墨水 - 塔克小鼠海马的白蛋白(绿色)和Glut1(红色)免疫染色的代表性图像(分别为AP处理和车辆)。比例尺:50μm。 (F.1,F.2)定量年轻人与车辆与AP处理的动物中白蛋白荧光强度的定量。每个点代表了分析的所有动物[Young(3 m,1f),未治疗(4 m,3f),AP(3 m,4f),闭合符号=男性和开放符号=雌性小鼠]的所有场(4-6)的平均值(4-6)。结果是平均值±SEM。使用未配对的学生的t检验进行统计分析( * p <0.05, * p <0.05; ** p <0.01)。(e)P21 + ECS Young的TSNE图与来自三个数据集的Old:GSE129788,GSE146395和GSE14763。颜色梯度代码:灰色至红色表示低至高表达值。
由于宿主免疫系统的差异,病毒在物种间传播面临巨大障碍。适应动物宿主的病毒可能无法很好地逃避人类免疫系统。然而,突变和其他病毒适应偶尔可以克服这些障碍,导致人畜共患感染。这一概念的例子是正在发生的禽流感大流行,它现在从鸟类传播到哺乳动物,包括牲畜牛群。因此,了解和加强抗病毒免疫对于预防和控制人畜共患疾病以及改善人类和牲畜健康至关重要,例如推动下一代疫苗的开发。