部署在酒泉卫星发射中心,配备机动式环境保障装置,具有快速反应、灵活使用、高效发射、批量储存、滚动备份等特点。2022年7月27日北京时间12时12分,Kinetica-1火箭从酒泉卫星发射中心成功将6颗卫星发射至500公里的卫星轨道。首飞载荷1068.63千克,全部卫星总重899千克。飞行过程中,各级固体发动机、伺服跟踪指令、级间分离、星箭整流罩均正常,6颗卫星准确送入预定轨道,获得过载、振动、冲击、噪声等完整遥测数据。本次首飞任务
在本研究中,我们对过去10年的扩展现实进行了对考古学用户研究的系统审查。筛选和选择过程后,选择了52篇文章进行深入分析。他们的分类遵循不同的轴:设备,位置依赖性,用户类型,交互和协作。我们还根据任务,评估测量,参与数量以及如何进行研究(预测试和/或测试后,形成性和总结性评估,定量和定性数据)来组织现有的用户研究。我们发现了考古学和文化遗产之间的相互交织的关系,这反映在古老的博物馆展览和考古遗址上的申请中。还研究了针对考古学家和公众开发的系统之间的相似性。我们的目的是在不同的用户研究之间找到一个共同的基础,可以帮助下一个系统的设计师具有可以构建系统的基础。我们还强调了这是需要解决的用户类型时,这将是首选和最合适的评估技术。结果表明可测量变量和可能的选择的异质性,但可以得出一些准则。
使用AI(从Genai到代理AI)自动化任务并创造效率。尽管大多数政府系统都旨在自动化核心业务流程,但传统技术和复杂的代理任务仍需要大量的手动努力。更广泛地使用基于AI的系统可以通过假设繁重的,重复的,低级的任务来帮助优化资源,以便政府员工可以专注于解释数据,批判性思维和服务提供。将AI部署用于适当的任务也可以节省无数小时。Deloitte研究估计,智能技术从起草新技术的起草报告到路由文档到适当的专家进行审查的任务节省了75%至95%。4
人工智能(AI)和扩展现实(XR)的融合已迎来了生物医学工程的变革性时代,从而在诊断,治疗和教育方面取得了重大进步。本评论旨在探索AI和XR技术的整合,并强调其集体潜力在解决相关挑战的同时彻底改变医疗保健实践。AI具有自适应算法,在医学成像,疾病预测和优化治疗方案中已成为必不可少的。XR技术,包括虚拟现实(VR),增强现实(AR)和混合现实(MR),提供了沉浸式和互动的环境,可增强医学培训,康复和手术精度。这项研究批判性地评估了AI和XR在实际生物医学情景中的应用,将结果与传统的医疗保健实践进行了比较,并提出了证明其有效性的案例研究。此外,审查还讨论了这些技术的局限性,包括算法偏见,隐私问题以及对强大的监管框架的需求。检查了围绕患者安全和数据安全的道德考虑因素,以确保保持平衡的观点。通过分析最新进步并确定研究差距,本文提供了可行的见解,并提出了未来的方向
有人建议,教学法中的媒体和技术有效性是一个神话。干预并非仅仅因为新干预而自动有效。,通常,最初的炒作经常导致期望和随后的失望。虚拟和增强现实,使用越来越广泛的数字平台的元式和协作虚拟学习环境都在此叙述中均出现了。但是,最初的失败无法满足期望,尤其是在理所当然的价值时,不应谴责这些技术被驳回。具有异性设计的新兴机会(异步和不对称角色,任务,接口平台,用户功能等)他们的技术能力和教学潜力太显着。的需求是通过有意义的经验进行更深入的学习,而后者是通过用户体验因素所带来的情感和认知参与来促进的,这些因素包括存在,流动和自我效能感。本文的核心断言是,通过以用户为中心的软件设计,可以大大增强这些学习技术的有效研究,这些软件设计的重点是唤起这些因素。硬件配置和软件设计应提供基于研究信息的互动设计构建的培训场景。这里的转折是,在本文中,我们将寻求经常被低估的听觉感知领域,特别是与人类与人类与数字技术的互动有关,以提出一套新颖的交互设计原理,目的是增强扩展现实的协作。
虽然13.8%的美国人口居住在农村地区,但约有66%的医疗保健提供者短缺地区在农村县。2,医疗保健访问的这种差异表明,与城市疾病相比,农村居民平均而言要比城市疾病,癌症,癌症,意外伤害,中风,呼吸道疾病和城市同龄人遭受更高的死亡风险。3以例子为例,虽然农村居民的糖尿病发生率较高,但近三分之二的农村县缺乏自我管理计划4,其中参与对于防止核心状况至关重要,包括失明或肢体损失。5加重这些挑战的是缺乏获得专家的机会,提供者和设施的旅行时间相对较长,而公共交通选择较少。6年间约有4%的农村医院在2013年至2020年之间关闭。在这些社区中,居民现在走得更远20英里,可用于普通的住院服务,并进一步前往专业服务,包括药物使用障碍
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
鉴于 ESGTech 领域的信息披露要求不断提高,新加坡的上市公司将在 2025 年率先采用和实施国际可持续发展标准委员会 (ISSB) 发布的 IFRS 可持续发展披露标准的要求,大型非上市公司将在 2027 年紧随其后,因此需要技术和创新解决方案来克服数据质量问题并协助创建透明和一致的报告。因此,许多公司进入了 ESGTech 领域,承诺提供提供准确且可访问数据的解决方案。政府和机构提供的激励措施进一步支持了这一领域。新加坡金融管理局向气候投资组合投入 23.8 亿新加坡元,并推出了 gprnt.ai (Greenprint) 平台 5。所有这些都启动了非常活跃的 ESGTech 生态系统。
摘要——扩展现实 (XR) 的最新发展已经证明了该技术在教育领域的优势。不幸的是,教育工作者可能不熟悉 XR 技术,并且可能很难在课堂上采用这项技术。本文介绍了欧盟资助的教育 XR 项目(称为教育扩展现实 (XR4ED))的总体架构和目标。该项目的目标是提供一个平台,让教育工作者无需具备编程或 3D 建模专业知识即可构建 XR 教学体验。该平台将为用户提供一个市场,以获取例如 3D 模型、化身和场景;用于创作新教学环境的图形用户界面;以及允许协作 VR 的沟通渠道。本文介绍了该平台,并重点介绍了协作和社交 XR 的一个关键方面,即化身的使用。我们展示了以下方面的初步结果:(a) 用于将教育内容填充到 XR 环境中的市场、(b) 在非玩家角色和学习者之间进行交流的智能 AR 助手以及 (c) 在协作 VR 中提供非语言交流的自我化身。
摘要 — 眼动追踪是扩展现实 (XR) 中基于凝视的交互的关键技术,但传统的基于帧的系统难以满足 XR 对高精度、低延迟和低功耗的要求。事件摄像机由于其高时间分辨率和低功耗而提供了一种有前途的替代方案。在本文中,我们提出了 FACET(快速准确的基于事件的眼动追踪),这是一种端到端神经网络,可直接从事件数据输出瞳孔椭圆参数,针对实时 XR 应用进行了优化。椭圆输出可直接用于后续基于椭圆的瞳孔追踪器。我们通过扩展带注释的数据并将原始掩模标签转换为基于椭圆的注释来训练模型,从而增强了 EV-Eye 数据集。此外,采用了一种新颖的三角损失来解决角度不连续性问题,并提出了一种快速因果事件体积事件表示方法。在增强版 EV-Eye 测试集上,FACET 实现了平均瞳孔中心误差 0.20 像素,推理时间为 0.53 毫秒,与现有技术 EV-Eye 相比,像素误差和推理时间分别减少了 1.6 倍和 1.8 倍,参数和算术运算减少了 4.4 倍和 11.7 倍。代码可在 https://github.com/DeanJY/FACET 上找到。