巴基斯坦拥有 3190 万只羊,分属 17 个品种。这些品种被认为起源于阿富汗、俾路支和中亚的野羊乌里尔 (Ovis vignei) [1]。在这些绵羊品种中,西普利羊在生产性、繁殖性、生理生化和畜牧业相关特性方面的研究引起了强烈关注 [2–5]。它是巴基斯坦的一种中型细尾本地绵羊品种,相对较长的尾巴是其显著的形态特征之一。公羊平均体重为 32.8 公斤,母羊平均体重为 29.2 公斤,日产奶量为 0.2-0.4 升,年纤维产量约为 5.6 公斤 [3]。它有白色的体毛,头/耳朵为白色或浅棕色。它有一个扁平的鼻子,耳朵长约 15 厘米。巴基斯坦乔利斯坦沙漠的游牧民族饲养它主要是为了获取羊肉和羊毛,
声明和免责声明 D-Wave Quantum Inc. (D-Wave)、其子公司和附属公司尽商业上合理的努力确保本文档中的信息准确且最新,但可能会出现错误。D-WAVE QUANTUM INC.、其子公司和附属公司或其各自的董事、员工、代理或其他代表均不对因使用本文档或其中包含或提及的任何信息而引起的或与之相关的损害、索赔、费用或其他成本(包括但不限于法律费用)承担责任。这是全面的责任限制,适用于任何类型的损害,包括(但不限于)补偿性、直接、间接、惩戒性、惩罚性和后果性损害、程序或数据的损失、收入或利润的损失、财产的损失或损坏以及第三方索赔。
本报告重点关注 MD/HD 车辆的充电要求以及与轻型车辆 (LDV) 基础设施的协同作用。由于相关模型输入正在开发中,并且几年内不会建立,因此本分析更倾向于定性而非定量,因为电动汽车部署在 LDV 领域比 MD/HD 领域更成熟。本报告首先概述了 MD/HD 车辆类别和充电类型,包括车库和住宅充电等(第 2 节)。第 3 节分析了现有 MD/HD 车辆的基地(过夜停留位置),重点是车库和住宅基地,并讨论了对充电基础设施的影响。第 4 节讨论了确定 MD/HD 车辆是否、何时以及在何处可以利用 LDV 充电基础设施而不是需要专用充电器的关键特征。这些考虑因素包括电力需求、连接器、物理空间要求、付款考虑因素以及对电网的影响。第 5 节总结了适合近期电气化的 MD/HD 车辆的共同特征,并总结了电动 MD/HD 车辆市场的前景。结论(第 6 节)总结了报告的发现并概述了未来研究的领域。
摘要:目标:必须接种疫苗的大部分人口以实现牛群的免疫力。因此,疫苗接种计划的成功取决于接受程度。本研究旨在通过评估公众接种疫苗的意愿来了解尼日利亚的Covid-19-19-19疫苗接受和犹豫。研究设计:这是一项基于人群的横断面研究。数据是通过结构化的在线调查得出的。方法:2021年3月,使用结构化在线问卷进行了一项横断面研究。调查表调查了参与者的人口统计学特征和COVID-19和COVID-19疫苗的感知。使用卡方的描述性统计和推论统计以及单变量的逻辑回归,以确定与接受Covid-19疫苗相关的因素。结果:在618名受访者中,有272名(44%)报告愿意接种疫苗。有趣的是,在不接受Covid-19-19的346名受访者中,不接受不接受的最高边际原因是对政府163(47.1%)缺乏信任,随后相信疫苗不安全67(19.4%),而没有足够的信息信息,没有足够的信息。此外,在统计学上,男性受访者和大学学位或更高的受访者
摘要:本研究研究了Uppsala模型的适应性,以增强欧盟(EU)资助的项目的管理,特别是专注于该模型的宏观和微型元素。最初是为公司级国际化开发的Uppsala模型,为应对欧盟项目实施的复杂挑战提供了一个宝贵的框架,其中包括官僚主义的障碍,多样化的利益相关者管理以及欧洲一体化的复杂性。本文强调了尽管申请流程和熟练的受益人提高了项目经理所面临的持续问题。通过应用Uppsala模型,该模型强调了逐步的知识发展和资源承诺,本研究旨在弥合基金获取和项目交付之间的差距。Uppsala模型的宏观(广泛外部因素)和微观(个人和组织行为)观点的整合为管理国际,多利益相关者欧盟倡议提供了全面的方法。这种方法是通过Sumanu项目举例说明的,该项目解决了波罗的海地区的营养回收和可持续肥料管理。调查结果表明,可以通过促进更好的利益相关者关系,增量学习和自适应策略来有效地应用Uppsala模型的原则来增强复杂的欧盟项目的执行。这项研究强调了在欧盟背景下实现成功的项目成果方面的体验式学习和网络观点的相关性。
国际标准化组织提供了各种术语来解释石墨烯及其在2017年的工作,以避免遵守查询中的定义。 div>“基于ISO的术语”可以描述如下:•石墨烯:一层碳原子。 div>也称为牙石墨烯或单层石墨烯或两层石墨烯:两个定义明确的重叠石墨烯层; •低层石墨烯:3-10个定义明确的重叠石墨烯层。 div>•石墨纳米层:侧尺寸〜100 nm至100微米,并从1到3 nm厚的石墨烯。 div>
本文深入探讨了人类与人工智能 (AI) 互动的动态,强调优化这些互动以提高人类生产力。该研究采用扎根理论文献综述 (GTLR) 方法,系统地识别和分析了 2018 年至 2023 年期间发表的文献中的主题。数据主要从 Scopus 数据库收集,使用 Web of Science 来证实研究结果,并包括通过滚雪球效应确定的其他来源。这项探索的核心是社会情感属性的关键作用,例如信任、同理心、融洽关系、用户参与度和拟人化——这些元素对于成功将 AI 融入人类活动至关重要。通过对现有文献进行全面回顾并结合案例研究,本研究阐明了如何设计和使用 AI 系统来促进人与机器之间更深层次的信任和同理心理解。分析表明,当 AI 系统适应人类的情感和认知需求时,协作效率和生产力会显着提高。此外,本文还讨论了培养这种人机关系的伦理意义和潜在的社会影响。它主张人工智能发展的范式转变——从主要关注技术能力转向采用更全面的方法,重视人机互动的社会情感方面。这种转变可能为人类与人工智能之间更有意义、更富有成效的合作铺平道路,最终带来技术创新和以人为本的进步。
简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3导航。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3编辑配置实例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4创建配置实例。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4回顾默认配置值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5设置SAS VIYA Web应用程序的超时间隔。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6禁用选择通知。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95设置SAS VIYA Web应用程序的超时间隔。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6禁用选择通知。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9
为了保护放射性来源产生的电离辐射的种群,学者们创建并研究了各种创新的屏蔽材料。伽玛射线和中子的衰减系数表征了辐射被材料吸收的程度[2]。几个过程在电离辐射与物质的相互作用中发生,具体取决于吸收材料的强度和类型。伽玛射线遵循不同的吸收法,并具有更高的渗透率[3]。在核物理学中,辐射在伽马或X射线和中子衰减期间与物质的相互作用很重要。需要选择材料作为X射线和伽马辐射的盾牌时,例如质量衰减系数及其衍生物非常重要[4]。通过质量衰减系数表示伽马(或X射线)与物质相互作用的可能性。在生物,医学,工业和农业领域使用的生物,屏蔽和其他重要材料中伽马和X射线的大规模衰减系数将具有巨大的适用性[5]。研究的目的