主席蒋国兴中国,上海, 2022 年1 月18 日于本公告日期,本公司之执行董事为蒋国兴先生、施雷先生、俞军先生及程君侠女士; 非执行董事为章倩苓女士、吴平先生、孙峥先生及刘华艳女士;独立非执行董事为郭立先生、曹钟勇先生、 蔡敏勇先生及王频先生。 *仅供识别
主席蒋国兴中国,上海, 2024 年12 月11 日于本公告日期,本公司之执行董事为蒋国兴先生、施雷先生、俞军先生及沈磊先生; 非执行董事为庄启飞先生、张睿女士、宋加勒先生及阎娜女士;独立非执行董事为曹钟勇先生、蔡敏勇先生、王频先生及邹甫文女士。 *仅供识别
主席蒋国兴中国,上海, 2024 年10 月30 日于本公告日期,本公司之执行董事为蒋国兴先生、施雷先生、俞军先生及沈磊先生; 非执行董事为庄启飞先生、张睿女士、宋加勒先生及阎娜女士;独立非执行董事为曹钟勇先生、蔡敏勇先生、王频先生及邹甫文女士。 *仅供识别
主席蒋国兴中国,上海, 2024 年10 月14 日于本公告日期,本公司之执行董事为蒋国兴先生、施雷先生、俞军先生及沈磊先生; 非执行董事为庄启飞先生、张睿女士、宋加勒先生及阎娜女士;独立非执行董事为曹钟勇先生、蔡敏勇先生、王频先生及邹甫文女士。 *仅供识别
北京理工大学光学与光子学院,北京,100081,中国 电子邮件:yuanyue000418@163.com 收稿日期:2022 年 5 月 1 日/接受日期:2022 年 6 月 1 日/发表日期:2022 年 7 月 4 日 本文重点研究了碳和氮掺杂碳作为超级电容电极材料的制备、结构和电化学表征。电极材料是通过粉碎、氧化预处理和键合、碳化和活化制备的,聚合物材料加工成碳基材料。为了制备碳气凝胶电极材料,采用富氮前驱体方法通过氮掺杂来改变获得的碳基底材料。 SEM 和 XRD 对形貌和晶体结构进行分析表明,掺杂样品中引入了氮,碳电极表面覆盖着云状团簇和不均匀的聚集碳颗粒,而 N 掺杂碳样品具有海绵结构,其中交织着类似石墨的薄片,具有更高的粗糙度和孔隙率,以及更大的表面积。使用循环伏安法 (CV) 和恒电流充放电 (GCD) 循环对制备的碳基材料进行电化学研究表明,N 掺杂碳比对照样品具有更高的电化学电容性能,以及理想的快速充放电性能和功率器件的高功率容量。在 1 A/g 的电流密度下,碳和 N 掺杂碳的比电容分别为 13.56 和 192.12 F/g,这意味着 N 掺杂样品的比电容比未掺杂材料提高了 14 倍。经过 10000 次循环后,N 掺杂碳的循环稳定性显示出几乎 108% 的电容保持率。根据 N 掺杂碳超级电容电极性能与早期关于超级电容器中多孔碳材料的报道的比较,N 掺杂碳超级电容电极的比电容、功率和能量密度与其他报道的 N 掺杂多孔碳结构的值相当或更好。这些测试表明,使用所述方法生成的氮掺杂碳电极材料具有较低的内阻,并且可以在超级电容器中保持良好的电化学性能。关键词:氮掺杂碳;电化学性能;富氮前体;超级电容电极材料
肿瘤学中的精确药物旨在根据患者肿瘤的独特遗传和分子特征来个性化治疗,以提高治疗效率或最小化副作用。随着技术进步产生越来越精确的肿瘤微环境数据,该数据的复杂性也会增加。尤其是空间数据 - 最近且有前途的OMS数据类型 - 为细胞的分辨率提供了分子信息,同时将细胞在组织内的空间环境保留。为了充分利用这种财富和这种复杂性,深度学习是一种能够超过传统方法的局限性的方法。本手稿详细介绍了旨在改善单细胞和空间数据复杂系统的新深度学习和计算方法的开发。描述了三个工具:(i)SCYAN,用于细胞仪中细胞类型的注释,(ii)SOPA,一种一般的空间数据预处理管道,以及(iii)Novae,是空间数据的基础模型。这些方法适用于几个精确的医学项目,加深了我们对癌症生物学的理解,并促进了新生物标志物的发现以及确定潜在的精密医学股份目标。
2° 为巴拉班先生巨大的肚子提供一个大垫子。 -房间:(巴拉班先生走进来,舔着手指和嘴巴,感到自豪和满足。) 房子的主人:(不高兴和怀疑)巴拉班先生!巴拉班先生:(避免交谈,但依然骄傲)银色的手杖在我邻居的花园里一瘸一拐地走着…… 房子的主人:你吃了什么?巴拉班先生:(厚颜无耻地撒谎)我的金纽扣!家主:(更加愤怒)巴拉班先生!巴拉班先生:(稍微不那么自豪)银色的手杖在我邻居的花园里一瘸一拐地走着…… 家主:(更加生气)你吃了什么?巴拉班先生:(撒谎但有点担心)我的金纽扣!家主:(非常生气)巴拉班先生!巴拉班先生:(把自己缩得很小)银手杖在花园里一瘸一拐地走着,