由于气候变化,热带气旋变得更加激烈,与基于数学模型的传统方法相比,基于AL的建模的崛起提供了一种更实惠和更容易获得的方法。这项工作通过整合卫星成像,遥感和大气数据来利用生成扩散模型来预测旋风轨迹和降水模式。它采用了一种级联的方法,该方法包含三个主要任务:预测,超分辨率和降水建模。培训数据集包括2019年1月至2023年3月的六个主要热带气旋盆地的51个旋风。实验表明,来自级联模型的最终预测显示,对于所有三个任务,分别超过0.5和20 dB的良好结构相似性(SSIM)和峰值信号 - 噪声比(PSNR)值(SSIM)和峰值信号 - 噪声比(PSNR)值分别具有出色的结构相似性(SSIM)。可以在单个NVIDIA A30/RTX 2080 Ti的30分钟内生成36小时的预测。这项工作还强调了AL方法的有希望的效率,例如在天气预报中为高性能需求的扩散模型,例如热带气旋预测,同时保持计算负担得起,使其非常适合具有关键预测需求和财务限制的高度脆弱区域。代码可在https://github.com/nathzi1505/forecast-diffmodels上访问。
摘要 - 在当前时代,基于脱氧核糖核酸(DNA)的数据存储是一种有趣的方法,具有实质性的学术兴趣和研究。本文介绍了一种新型的DNA图像存储的新型深关节源通道编码(DJSCC)方案,称为DJSCC-DNA。该范式通过三个关键修改将自己与常规的DNA存储技术区分开:1)它采用先进的深度学习方法,采用卷积神经网络来编码和解码过程; 2)它无缝将DNA聚合酶链反应(PCR)扩增整合到网络体系结构中,从而增强了数据恢复精度; 3)它通过针对优化的生物学约束来重组损失函数。通过特定的通道测试的数值结果证明了所提出的模型的表现,这表明它超过了传统的深度学习方法,从峰值信号 - 噪声比率(PSNR)和结构相似性指数(SSIM)方面。此外,该模型可有效确保对均聚物运行长度和GC含量的积极约束。
摘要。密码学和隐身志摄影是信息安全性的两个主要组成部分。利用加密和隐身来建立许多保护层是一种值得称赞的方法。我们本文的主要目的是通过密码和隐身术的结合来构建一种综合方法,以安全地传输数据。密码学和隐身志学是秘密传输信息的两种常见方法。rc4在本文中用于将信息从明文更改为密码,然后将密码文本集成到图像中至少有显着位(LSB)。结果是根据处理时间,峰值信号 - 噪声比率(PSNR)和均方误差(MSE)定义的。实验结果表明,Stego图像的可接受质量,并将两种技术结合起来为原始隐肌提供了额外的安全性。
结果:在三个SPIO示踪剂中,通过溶液中的MPR测量的最大MPI信号最高,但是,在构图中,综合体内融合后,信号明显较低。游离和细胞内颗粒的峰值信号没有差异。与systomag-d相比,pollag的细胞铁负荷更高。从游离和细胞内SPIO的图像中测得的总MPI信号对于Propag来说最高。变化的成像参数证实,较低的梯度场强和较高的驱动场振幅提高了示踪剂和细胞灵敏度。结论:这些结果表明,通过松弛测定法评估示踪剂不足以预测所有SPIO示踪剂的性能。尤其不是用于较大的聚合物封装的铁颗粒,例如propag,也不适用于细胞内部内在的SPIO颗粒。通过较低的梯度场强和较高的驱动场振幅改善MPI敏感性与图像分辨率的权衡有关。
事件相关电位 (ERP) 是一种由大脑的敏感性和认知引起的独特大脑活动模式,而 P300 则会引起认知功能的电位变化。由于 P300 波是跨多个大脑通道的认知反应,与特定时期内测量的脑电图 (EEG) 和异常刺激相关,因此需要合适的信号处理应用程序进行解释。此外,神经科学标准下的多步数据处理使得 P300 反射难以通过常用方法进行分析。因此,本研究提出了基于多脑通道 P300 峰值信号检测的脑波应用处理模型。本研究将 64 个通道 ERP 数据集应用于快速傅里叶变换 (FFT) 中的带通滤波器,具有特定的信号处理范围,同时应用 ERP 平均作为特征提取方法。此外,实验元数据通过机器学习方法决策树与滤波后的 P300 峰值信号一起应用于通道分类。实验结果表明,P300诱发电位在不同脑区具有准确的心理反映。
音频隐肌是一种将数据隐藏在WAV,MIDI,AVI,MPEG和MP3文件的音频文件中的技术。音频文件已充当秘密通信多媒体文件(文本,图像,音频和视频)的封面。最不重要的位算法(LSB)是音频隐肌的标准和传统算法。使用LSB算法隐藏在WAV的音频文件中的文本文件中。由组织内部或外部交换了由此产生的Stego音频文件,以促进具有安全性和不可识别性的远程诊断。将音频隐身与物联网合并,以机密性和完整性增强了医疗记录中的安全沟通。使用归一化的互相关测量盖子和Stego Audios中的相似性。平均平方误差(MSE),峰值信号噪声比(PSNR)和位错误率(BER)性能指标评估封面音频和Stego音频文件中的失真。使用远程医疗模型的IoT使用IoT的音频隐身术超过了Stego Audio清晰度,平均PSNR为34.5dB,较低的BER为0.00035。
通过公共渠道交换大量信息已成为日常发生,这种情况在可能发生网络攻击的情况下会产生巨大的风险,并激发学术和科学界制定新的强大安全计划。该研究的目的是使用数学和人工智能工具来提出新的安全计划。下面介绍了用于文本的加密货币算法的设计和实现。所采用的方法包括使用细胞自动机检测载体图像的边缘,利用颜色对比度的多样性以及Tinkerbell混沌吸引子生成两个伪随机序列:一种用于加密方案,而另一个用于选择载体图像的边缘像素图像的边缘像素图像隐藏。此外,还包括一个验证阶段,其中接收器提供了一个代码以确认未更改stegoimage。使用Diffie-Hellman算法在发件人和接收方之间共享系统密钥。对所提出的算法进行了一系列地理和加密性能测试,包括熵分析,均方根误差(MSE),相关系数,关键敏感性,峰值信号 - 噪声比(PSNR),归一化的根平方误差(NRMSE)以及结构相似性指数(SSI)。将PSNR,MSE和SSI测试的结果与科学基准进行了比较,揭示了与信息安全标准保持一致的指标。最后,由于学术练习的结果,对加密货币算法进行了整合,其指标使其可能适用于现实世界中的环境。
摘要。目的:这项工作旨在应用量子希尔伯特(Hilbert)争夺,以增强图像水印的安全性和完整性,而不会影响视觉质量退化。对被调查方法的进一步概念可能会为传统的水印方法提供一个很好的解决方案,以通过新的量子计算概念解决数字图像安全性和完整性的一些问题。方法:本文回顾了量子希尔伯特(Hilbert)争夺,其计算复杂性为𝑂(𝑛22 2)。该过程涉及将图像编码为量子状态,并用希尔伯特曲线置换量子,并使用量子门嵌入水印。结果:定量性能评估指标,例如峰信号与噪声比(PSNR)和结构相似性指数(SSIM),显示出高峰信号与噪声比(PSNR)值的高峰值信号(PSNR)值,从56.13 dB到57.87 db至57.87 db,结构相似性指数(SIM)(SSIM)(SIM)(SIM)(SIM)(SIM)(SIM)来自0.9985至0.985至0.999990,相应地愿意。这证明了质量降解非常小,结构的细节得到很好的维护。新颖性:所提出的方法将量子计算与传统水印步骤集成在一起,以在数字水印中采用安全有效的方法。进一步的开发应集中于改善有关计算效率的量子电路,将方法的适用性扩展到广泛的图像上,以及在水印中的各种情况,并通过结合量子和经典方法来提高性能和可伸缩性,以找到混合方法。关键字:希尔伯特(Hilbert)争夺,图像水印,量子希尔伯特(Hilbert)争夺,2024年7月收到的绩效测量 / 2024年10月修订 / 2024年11月接受的这项工作已在创意共享4.0国际许可下获得许可。