最小背景电流 电弧阳极加热系数 电阻加热系数 气体直径 喷嘴熔融金属直径 桥接电流脉冲频率 推力 电弧能量 热输入 短路能量 电流 电弧期间的电流 背景电流 峰值电流 短路期间的电流 恒定焊丝拉伸压力 电弧功率 雷诺数 焊丝电极横截面积 接触面积 时间 电流脉冲周期 电弧时间 背景电流持续时间 熔滴分离时间 峰值电流持续时间 短路时间 焊接电压 电弧期间的电压
蓝牙 5.0 BR/EDR/BLE 专有双模 RF SOC 极低功耗 10nA 关机模式(外部中断) 800nA 睡眠模式(32kHz RC OSC,睡眠定时器和寄存器 ON) 2.1uA 保持模式(32kHz RC OSC,睡眠定时器,2k 保持存储器和寄存器 ON) Rx 峰值电流(不带 DCDC) BLE/2.4G 模式下 16mA EDR 模式下 17mA Tx 峰值电流(不带 DCDC)@ -2dBm BLE/2.4G 模式下 22mA EDR 模式下 23mA Rx 峰值电流(带 DCDC) BLE/2.4G 模式下 6.75mA EDR 模式下 7.25mA BLE/2.4G 模式 EDR 模式下 17mA <25uA 平均,500ms 嗅探保持连接 2.4GHz 收发器 单端 RFIO BLE 模式下 -95dBm 支持 250kbps、1/2/3Mbps 数据速率 Tx 功率高达 +9dBm 音频功能 麦克风 PGA 0-18dB,每步 3dB 16 位 ADC 2x16 位 DAC,立体声 音频 SNR:ADC 88dB;DAC 92dB
摘要在目前的工作中,我们准备了一种基于Zeolitic Imidazate框架-67(ZIF-67)和离子液体1-丁基-3-甲基咪唑酰胺氟磷酸磷酸盐(BMIM..pf6)修改的碳糊电极(CPE),该cpcy的确定为有效的NEN-n-n-n n-n n n n n n n n n n n n n n n n n n n n n n。与其他CPE相比,由于ZIF-67/BMIM.PF6修饰的CPE在ZIF-67/BMIM.PF6型CPE表面上,N-乙酰半胱氨酸的峰值电势最低和峰值电流反应增强的峰值电流响应与其他CPE相比,由于ZIF-67和BMIM.PF6的显着催化作用的显着催化作用相比,峰值电流的响应增强。在优化条件下,ZIF-67/BMIM.PF6/CPE传感器的电化学响应提供了良好的线性关系,N-乙酰半胱氨酸浓度从0.04到435.0 µm。N-乙酰半胱氨酸的检测限为0.01μm。在进一步的研究和测量中,片剂样品中N-乙酰半胱氨酸的估计证实了ZIF-67/BMIM.PF6/CPE传感器的有用性。
评估电极反应的过程(吸附或扩散控制)。使用CV技术对FEOMCPE的GU和DA的扫描速率效应进行了质疑。图6a以50 mv/s的扫描速率在FeOMCPE的CV处登出GU。在GU中,随着扫描速率的增加,峰值电流伪装增加,潜在的可忽略不计向正面的转移。电势移位主要是由于电极表面上吸附层的发展。扫描速率与峰电势之间绘制的图(图6B)和IPA = 0.5606+1.185ph(R 2 = 0.9804)是线性回归方程。因此,该结果表明GU的电子传递过程受吸附控制,并且对数扫描速率与对数峰值电流的图表如图6C所示。结果具有良好的线性,相关系数值(R 2),被发现为0.999。
表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
摘要 碳化硅 (SiC) MOSFET 属于宽带隙器件家族,具有低开关和传导损耗的固有特性。SiC MOSFET 在较高工作温度下的稳定运行引起了研究人员对其在高功率密度 (HPD) 功率转换器中的应用的兴趣。本文介绍了基于 SiC MOSFET 的两相交错升压转换器 (IBC) 的性能研究,用于调节多电飞机 (MEA) 中的航空电子总线电压。已经开发了 450W HPD、IBC 进行研究,当由 24V 电池供电时,可提供 28V 输出电压。提出了一种 SiC MOSFET 的栅极驱动器设计,可确保转换器在 250kHz 开关频率下运行,降低米勒电流和栅极信号振铃。峰值电流模式控制 (PCMC) 已用于负载电压调节。将基于 SiC MOSFET 的 IBC 转换器的效率与 Si 转换器进行了比较。实验获得的效率结果表明,SiC MOSFET 是重负载和高开关频率操作下的首选器件。关键词:高功率密度 (HPD)、交错升压转换器 (IBC)、多电飞机 (MEA)、峰值电流模式控制 (PCMC)、碳化硅 (SiC)
无电池助推器,gyscap 680E的功率由超级电容器提供。总容量为680 farads,它可以提供1600a的起始电流,而峰值电流为9000a。超级电容器是无限的电源来源,可以运行1,000,000个周期。它可以确保成千上万的开局而不会对性能产生任何影响。GYSCAP 680E还具有用于深度放电电池的SOS模式。
AW37417 有三种工作模式。在重载时,该器件以 6MHz 固定频率 PWM 模式工作,以最大限度地减少 RF 干扰。在轻载时,AW37417 自动进入峰值电流控制 PFM 模式,以减少开关损耗。在 PFM 模式下,器件消耗的静态电流降低至 27μA,以延长电池寿命。器件在关断模式下关闭,并将电源电流降低至 0.1μA(典型值)。