在KHI于2024年5月14日举办的一次召集期间收集了有关指南的反馈,标题为“研究中的居中公平:制定实践策略和确定考虑因素”,以及通过事后调查。召集包括来自堪萨斯州各地的约50名利益相关者,他们审查了这些策略并提供了有价值的反馈,后来又将其纳入了指南。该活动的特色是演讲者EusebioDíaz,M.A。,卫生前进基金会策略,学习与沟通副总裁,来自亚利桑那州立大学的香农·波特略(Shannon Portillo)博士,以及密苏里州肯尼亚大学的M.S.C.R. Bridgette L. Jones,M.S.C.R.。演讲者讨论了研究中的当前公平状态,应对挑战并探索未来的机会。
我们正处于“人工智能革命”之中(Clark 等人,2019 年;UKRI,2021 年),世界上发展最快的深度技术有可能改写整个行业的规则(HM Government,2021b),从根本上改变我们的工作和生活方式。机器学习和人工智能等数据科学的进步意味着计算机现在可以以高精度和高速度分析和学习大量信息,为大多数行业带来显著的效率和性能提升。为了充分利用这些技术突破,许多科学学科,包括天气和气候科学和预测,都在修改其运营计划(Dueben 等人,2021b)。我们在此提出了一个框架,说明气象局将如何应对这一机遇并实现其目标“利用数据科学的力量推动天气和气候科学和服务的前沿”。
维多利亚州卫生部(DOH)已资助Murray PHN与墨尔本东部PHN合作,领导和实施质量和系统改进试点项目,以改善维多利亚州风险群体的眼睛状况/疾病的目光筛查和检测,以减少避免的盲目性和视力丧失的普遍性。该项目正在与2020年澳大利亚,吉普斯兰PHN,西北墨尔本PHN和西部维多利亚州PHN合作进行。
用于在 PWB 中嵌入电容器的材料 Kazunori Yamamoto、Yasushi Shimada、Yasushi Kumashiro 和 Yoshitaka Hirata 日立化学株式会社 日本茨城县下馆 摘要 我们开发了一种名为 MCF-HD-45 的新型树脂涂层箔 (RCF) 材料,可嵌入 PWB 中构成电容器。该材料由热固性树脂和高介电常数 (Dk) 填料组成。填料具有多峰尺寸分布以实现高负载;特定的表面活性剂对于保持填料在清漆中的分散稳定性也至关重要。这些技术使这种材料具有 45 的高 Dk 和出色的可靠性。本文介绍了该材料应用于手机功率放大器模块和低通滤波器的测试结果,以及数据库对高频电路仿真的好处。简介 近年来,手机等无线设备的性能大大提高,尺寸也减小了。这种趋势推动了 RF 模块小型化技术的发展。以前,人们采用较小的半导体和无源器件来实现这一目的。然而,为了进一步减小尺寸,人们正在积极研究在 PWB 中嵌入无源和有源器件的技术。关于使用低温共烧陶瓷 (LTCC) 或硅作为基板的嵌入式无源器件的报道很多。如今,人们正在积极研究将有机基板用作此目的的基板,1-5 因为它们的热膨胀系数 (CTE) 与主板相匹配,并且易于扩大基板尺寸。如果现有的有机基板制造工艺适合嵌入无源器件,它们将具有巨大的成本效益优势。如今,模拟技术对于 RF 模块的电路设计非常重要。然而,适用于 PWB 中嵌入式无源器件的电路设计的数据库很少。电路设计师、PWB 制造商和材料供应商之间的合作将是必要的,以激活嵌入式无源技术。实验部分以改性环氧树脂为高分子材料,以Dk=1500的钛酸钡(BaTiO 3)为高Dk填料,选择适当的溶剂将各组份材料配成清漆,用砂磨机混合制成均质清漆,并添加一些表面活性剂或分散剂。然后将清漆涂在典型的铜箔(3/8盎司)上,采用标准涂覆技术,得到名为MCF-HD-45的新型RCF。在此过程中,绝缘层厚度控制在20μm左右。用于可靠性测试等的试样采用传统的层压工艺制作,即在180 OC下2.5 MPa压力下放置60分钟。然后在以下条件下进行可靠性测试:85 OC/85%RH/6 V dc。电路仿真采用安捷伦科技公司的先进设计系统 (ADS) 进行。采用同一制造商的矢量网络分析仪 (VNA) 测量材料及其应用的高频特性,该分析仪配备探针台以控制台面温度。结果与讨论图 1 显示了嵌入 PWB 中的无源元件的概念。由夹在两个电极(例如铜箔)之间的聚合物复合材料制成的厚膜电容器、由薄膜和两个电极制成的薄膜电容器以及通过在基板上图案化制成的电感器可用作嵌入 PWB 中的无源元件。
Solution: End-to-End TinyML Deployment and Benchmarking Flow • [MLIF] (Machine Learning Interface) • Framework/target-independent abstraction layers for Target SW • [MLonMCU] • Provides support for • 15+ targets (mainly RISC-V simulators) • 6 backends ([TVM] and TFLM) • Handling of Dependencies • Analysis and Exploration methods • Designed with并行性/可重复性
对于有限维黎曼流形,霍普夫-里诺定理表明,陈述 1.) – 3.) 彼此等价,并且 1.)、2.)、3.) 中的每一个都蕴涵 4.)。但是,我们的设置是无限维的,因此我们必须根据一些能量原理“手工”显示它们中的每一个。最后,但并非最不重要的是,我们将看到几个在结和链空间中长度最小化测地线的数值模拟。
摘要 - 可靠的结构和系统对于众多工程应用至关重要,例如制造,能量转换和生物医学植入物。这些系统通常在恶劣的环境中运行。对这些结构的有效监视和诊断,这些结构正在运行的恶劣环境至关重要。近年来,微/纳米系统技术的重大发展发生了。但是,这些微/纳米系统必须在敌对的环境中生存,并在服务期间提供高精度,长期稳定性和良好的可靠性。为了实现此目标,分布式微/纳米传感器可以嵌入到临界位置,而不会干扰结构的正常操作。将讨论在金属和陶瓷结构上制造和嵌入微/纳米薄膜传感器的新方法。具体而言,本文将介绍两种主要的传感器嵌入方法:基于电镀的传感器嵌入和基于扩散键的传感器嵌入。将研究金属和陶瓷嵌入式微/纳米传感器在恶劣环境下的行为。嵌入式微型/NNAO传感器为众多工程过程带来了巨大的潜力。
该项目调查了使用Python将LSB(最不重要的位)隐肌造影术结合到图像和秘密密钥嵌入技术中。主要目标是找出最不重要的图片像素部分是否可以隐藏私人数据,例如加密密钥。该项目使用LSB隐化算法将秘密密钥嵌入图像文件中。为了用最少的视觉影响编码敏感数据,该技术操纵了每个像素RGB通道的最不重要的位。通信渠道的完整性在很大程度上取决于加密密钥的安全传输,这是当前安全过程中的常见实践。但是,当交换密钥时,可能会出现漏洞。这些键在当前系统中可能没有额外的安全性,使它们容易受到拦截或不需要的访问。通过将密码键直接嵌入到图片文件中,该技术介绍了一种革命性的方法。此技术旨在通过引入低调的安全层来增强密钥传输安全性。该项目研究了这种方法的潜在好处和挑战。这一发现很重要,因为它有可能通过利用LSB隐肌来添加额外的保密层来改善当前的安全方法。
• ACPR 2019,最佳海报奖 • ICIP 2020,Google Scholar Top-14,h5-index 45(2020 年。5) • ICPR 2020,Google Scholar Top-18,h5-index 38(2020 年。6)
具有集成电气隔离,如陶瓷基板。安装半导体的首选方法是低压低温银烧结工艺。该方法具有一些优点:首先,它能够在大型面板格式上组装芯片,从而实现高度并行处理。此外,芯片粘合精度对后续工艺步骤很重要,主要取决于芯片粘合工艺的精度,因为除了
