Behavioral Patterns - Example: Handling timer events - Flexible solution based on the design pattern Observer - Practical exercise: Using the observer pattern in the elevator control - Pitfalls in interface design or implementation - "Horizontal" and "vertical" interfaces - Event handling based on the design pattern Command - Practical exercise: Using the command pattern in the elevator control - Example: Traditional implementation of a state machine in C - Object-oriented solution based on the design pattern State -实践练习:使用电梯控制中的状态模式 - 示例:用户定义的内存管理 - 使用分区管理器分区及其管理 - 基于设计模式策略的灵活内存管理 - 实用练习:使用电梯控制中的策略模式 - 示例:具有常见基本结构的策略 - 基于设计模式模板方法
虽然参与性的研发得到广泛赞誉,但有效的明确程序可以确保最终用户参与仍然是圣杯。我们的研究提出了一种简单的参与方法,该方法是通过Laser Pulse开发的嵌入式研究翻译(ERT),并证明了其在乌干达西尼罗河地区的小型持有人蔬菜养殖社区中的应用。ERT涉及将研究结果直接集成到特定情况下的实际应用或解决方案中。它强调研究人员和利益相关者之间的合作,确保发现与现实世界中的相关,可行并有效地应用。它建立在四个支柱上:(i)研究人员与利益相关者之间的伙伴关系(ii)参与产生相关研究(III)产品的过程,以及(iv)对发现的传播。基于这些支柱及其基本原则,建议进行实施过程,从启动阶段开始,研究人员积极涉及各种各样的合作伙伴和利益相关者。这是一个设计阶段,其特征是参与性讨论,协作决策和计划。这些步骤指导实施阶段,在此期间,合作伙伴仍在积极参与研究。最后,伙伴关系共同传播了这些发现,以最大程度地发挥影响力和吸收。接下来是第二阶段(CO验证),其中利益相关者通过FGD和反馈会议验证信息。在我们的研究中,我们使用五阶段的程序将方法调整为乌干达语境:在第一阶段(了解环境),研究人员迅速获得了有关目标种植系统的相关方面以及通过文献审查和定量基线调查的广泛干预领域的尽可能多的信息。在第三阶段(干预措施的优先领域共选择),研究人员和利益相关者共同选择了目标作物以及要解决的特定约束。第四阶段是共同发展,涉及潜在技术的共同体和共同测试。最后阶段(传播)包括通过合作伙伴关系和其他传播渠道来扩展共同开发的技术。
此信息包的目的不同,不同的连接过程根据EG系统的大小和监管分类而适用 - 无论EG系统中使用的技术如何,以及电力是否会导出回我们的分销网络。此信息包列出了一些事情,如果您打算将EG系统连接到我们的分销网络,例如:相关的连接过程和要求支持提供服务的服务信息支持EG系统的连接所提供的服务的信息(包括此类服务是可有争议的)(包括可有争议的)相关成本范围相关成本与应用程序的连接相关或通过询问的连接与egs的连接相关
不同的连接过程根据EG系统的大小和监管分类而适用 - 不管EG系统中使用的技术如何,以及电力是否会导出回我们的分销网络。此信息包列出了一些事情,如果您打算将EG系统连接到我们的分销网络,例如:相关的连接过程和要求支持提供服务的服务信息支持EG系统的连接所提供的服务的信息(包括此类服务是可有争议的)(包括可有争议的)相关成本范围相关成本与应用程序的连接相关或通过询问的连接与egs的连接相关
虽然本文件包含与电力行业法规、行为准则和标准相关的材料,但其并非旨在为电力承包商如何履行其法定义务或遵守法规、行为准则或行业标准(例如 AS/NZS 3000(布线规则))提供法律建议。尽管在编写本文件时已尽职尽责,但 Evoenergy 并不保证本文件所含信息在发布时准确、完整或最新。在相关法律允许的范围内,Evoenergy 对因本文件所含信息的任何错误、遗漏或失实陈述而造成的任何损失、损害、成本或费用概不负责。
摘要 — 通过表面肌电 (sEMG) 信号对手部运动进行分类是一种成熟的高级人机交互方法。然而,sEMG 运动识别必须处理基于 sEMG 控制的长期可靠性,这受到影响 sEMG 信号的可变性的限制。嵌入式解决方案会受到识别准确度随时间下降的影响,这使得它们不适合可靠的手势控制器设计。在本文中,我们提出了一种基于时间卷积网络 (TCN) 的完整的可穿戴级嵌入式系统,用于基于 sEMG 的稳健手势识别。首先,我们开发了一种新颖的 TCN 拓扑 (TEMPONet),并在基准数据集 (Ninapro) 上测试了我们的解决方案,实现了 49.6% 的平均准确率,比目前最先进的 (SoA) 好 7.8%。此外,我们设计了一个基于 GAP8(一种新型 8 核物联网处理器)的节能嵌入式平台。使用我们的嵌入式平台,我们收集了第二个 20 个会话数据集,以在代表最终部署的设置上验证系统。我们使用 TCN 获得了 93.7% 的平均准确率,与 SoA SVM 方法(91.1%)相当。最后,我们使用 8 位量化策略来适应处理器的内存限制,对在 GAP8 上实现的网络的性能进行了分析。我们达到了 4 倍更低的内存占用(460 kB),性能下降仅为 3% 的准确率。我们详细介绍了在 GAP8 平台上的执行情况,结果显示量化网络在 12.84 毫秒内执行单个分类,功率包络为 0.9 mJ,使其适合长寿命可穿戴设备部署。
我们正在为每个人创造最好的Infineon旅程。这意味着我们拥抱多样性和包容性,并欢迎每个人的身份。在Infineon,我们提供了一个以信任,开放性,尊重和宽容为特征的工作环境,并致力于为所有申请人和员工提供平等的机会。我们根据申请人的经验和技能为基础。,即使您不能完全满足职位发布的所有要求,我们也期待收到您的简历。请让您的招聘人员知道他们是否需要特别注意某件事,以便您参与面试过程。
1. 简介 在汽车行业,电气解决方案的高度集成是一大趋势 [1]。因此,行业面临着提供集成度更高、更可靠、更节能的设备的需求 [1-4]。这些设备应安装在汽车有限的空间内。这种内部空间限制以及不断增加的功率密度需要增强散热以在减小尺寸的同时提高性能 [2]。PCB 嵌入式技术是解决这些问题的绝佳解决方案。事实上,它通过优化互连、减小尺寸和重量以实现小型化来提高电源模块性能 [1, 5]。这种优化可降低寄生电感并获得更好的热管理 [1, 6, 7]。本文选择的一个应用示例是智能皮带驱动起动发电机。对于此应用,我们采用了 PCB 嵌入式技术。对于后一种情况,本研究涉及一种新电源模块概念的可行性,该概念包含四个 100 V Si MOSFET ST315N10F7D8,作为单个开关并联,高度集成在 48 V/400 A 电机中,一方面减小体积和重量,另一方面提高热管理和芯片粘接的机械强度。该技术基于将 Si MOSFET 集成到 PCB 内部,使用银浆烧结进行芯片粘接和预浸渍复合纤维层压。本文将重点描述更为坚固的组装工艺,随后对原型进行电气测试以展示其功能,而机械测试将展示其强度。2. PCB 嵌入式组装设计其原理是使用基于厚铜板的绝缘金属基板 (IMS) 来传输大电流并优化散热。芯片堆叠在两块铜板之间以便于嵌入。芯片和铜板之间的连接由银烧结工艺确保。电绝缘由层压在这些铜板之间的预浸渍复合纤维层实现(见图 1)。此外,芯片栅极烧结到铜箔上,并且可以通过镀通孔 (PTH) 访问该铜箔。
在本文中,我们提出了一种称为自旋扭矩二极管(STD)的纳米级旋转射频(RF)检测器的电气模型。提出了一种用于模型参数提取的完整方法。得出了与STD的等效电路,并将设备电阻非线性的建模与自旋扭转二极管效应一起。提出了一种详细的逐步方法,以使用常规的直流测量,RF散射参数(S-Parameter),连续波和功率表征提取模型参数。参数提取后,与单个STD的测量结果进行了比较,成功验证了模型。最后,提出的STD电气模型用于预测基于2-STD的RF检测器体系结构的行为。仿真结果突出了提出的建模方法的兴趣,以研究合适的RF检测器体系结构,以提高单个或多体RF检测的RF-DC转换效率。