CD19 导向的嵌合抗原受体 (CAR) T 细胞疗法彻底改变了 B 细胞急性淋巴细胞白血病 (B-ALL) 患者的治疗。在肿瘤临床试验中,早期临床开发同时在儿童和成人中进行,这在有些肿瘤临床试验中是独一无二的。然而,在随后的几年里,复发/难治性 (r/r) 恶性肿瘤的成年患者数量不断增加,导致多种针对各种恶性肿瘤的 CAR T 细胞产品的开发加速,目前已有六种 CAR T 细胞产品获得 FDA 批准用于成人患者。相比之下,FDA 仅批准一种用于儿科患者的 CAR-T 细胞疗法:tisagenlecleucel,该疗法获批用于 ≤ 25 岁的难治性 B 细胞前体 ALL 患者或第二次或以后复发的 B 细胞 ALL 患者。 Tisagenlecleucel 也在对复发/难治性 B 细胞非霍奇金淋巴瘤的儿科患者进行评估,但尚未获批用于此适应症。所有其他经 FDA 批准的适用于成人患者的 CD19 导向 CAR-T 细胞疗法(axicabtagene ciloleucel、brexucabtagene autoleucel 和 lisocabtagene maraleucel)目前正在对儿童进行研究,有些病例已获得初步结果。随着数据量和复杂性不断增长,快速吸收和实施这些数据的必要性也在增加。在考虑“非典型”情况时尤其如此,例如当患者与关键临床试验中纳入的患者特征不完全一致时,或者当还有其他治疗方案(例如造血干细胞移植 (HSCT) 或双特异性 T 细胞接合器 (BITE))可用时。因此,我们对目前有关在儿科患者中使用 CD19 靶向 CAR-T 细胞疗法的文献进行了相关总结,并试图为寻求有关特定临床情况的更多数据的临床医生提供指导。
“免疫疗法”的开端可以说可以追溯到古埃及人。,他们像1800年代中期一样,像詹姆斯·佩吉特(James Paget),威廉·布希(Wilhelm Busch)和弗里德里希·费利森(Friedrich Fehleisen)一样,观察到一些癌症患者在感染后经历了肿瘤的消退。到1800年代后期,威廉·科利(William Coley)的“免疫疗法之父”开始进行注射,该注射是由死去的链球菌和塞拉蒂亚·马斯科斯(Serratia Marcescens)组成的,是一种免疫疗法的粗糙形式。他的工作是由他的女儿海伦·科利·瑙斯(Helen Coley Nauts)和劳埃德·旧的。Old致力于杆菌Calmette-guérin疫苗的抗肿瘤作用,并获得了“现代癌症免疫学之父”的名称。如今,免疫疗法的领域已在针对癌症的战争中提供了几支新的军备。这些包括使用单克隆抗体,细胞因子疗法(干扰素-α[IFN-α]和介毒素2 [IL-2]),免疫检查点抑制剂(抗CTLA-4,抗PD1和抗PD-L1),抗PD-L1,癌症/talimoge-pareme-parer-parer-parer-paremoigeNim-paremogogeNim-pare,共刺激性分子和收养细胞疗法(ACT)。建立在基因工程和分子生物学的十字路口上,ACT可以具有各种类型:肿瘤浸润淋巴细胞(TIL)治疗,T细胞受体(TCR)工程T细胞疗法,天然杀伤剂治疗,或嵌合抗原受体(CAR)T-Cell治疗。其中,汽车T细胞受到了最大的关注,并表现出了最大的希望。在TIL治疗中,从患者的肿瘤活检标本中提取了TIL,然后与暴露于患者肿瘤中存在的新抗原的自体性细胞共培养。tils,使用IL-2在体外扩展,然后将其注入患者。TIL治疗在黑色素瘤,结直肠癌和乳腺癌中表现出了一些希望。 TCR T细胞疗法比TIL治疗的侵入性较小,因为所需的淋巴细胞来自患者的外周血,并且比TIL更加增殖。 提取,纯化和激活后,T细胞为TIL治疗在黑色素瘤,结直肠癌和乳腺癌中表现出了一些希望。TCR T细胞疗法比TIL治疗的侵入性较小,因为所需的淋巴细胞来自患者的外周血,并且比TIL更加增殖。提取,纯化和激活后,T细胞为
对于患者开始在开始癌症治疗之前,对自己的医疗和牙科保险范围及其局限性进行教育很重要。例如,传统医疗保险不涵盖常规的牙科护理。一些Medicare Advantage计划包括有限的牙科覆盖范围(请确保阅读精美的印刷品)。在独特的情况下,Medicare可能涵盖牙科服务,例如在去除面部肿瘤时接受某些与JAW相关疾病(例如口腔癌)的放射治疗之前所需的服务(如口腔癌)或重建部分下颌(如有必要)。医疗补助可能会或可能不会涵盖牙科护理,具体取决于您的州。患者应与医疗和牙科团队分享他们的财务问题,并找出是否有任何财务资源。有关能够提供帮助的组织,请参见第9-10页的其他资源。
摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。
背景我们最近提供了概念概念,表明使用T细胞使用T细胞的T细胞疗法(TCR) - 基因疗法表达靶向突变体KRAS G12D的TCR可以介导患有泛蛋白癌患者转移性疾病的回归。1然而,其他患者的TCR-Gene治疗没有效率,因此需要增强T细胞活性的策略。在一些接受TCR基因治疗治疗的患者中,工程的T细胞通常会持续存在于患者中,这表明T细胞最终失去了介导耐用肿瘤退化所需的效力。来自共刺激受体的信号可以驱动有效的T细胞反应,但这些信号可能缺失或不足,在肿瘤微环境(TME)中。CD40是在抗原呈递细胞(例如B细胞,DCS和巨噬细胞)表面上发现的有效的成量蛋白,在激活这些细胞类型中起着重要作用,但是T细胞通常不表达CD40,除非激活后短暂地表达CD40。因此,我们假设CD40或CD40嵌合受体的过表达可以提高抗肿瘤T细胞功能时CD40通过激动剂抗CD40抗体(CDX-1140,CellDEX Therapeutics)参与。测试这一点的方法,我们设计了与KRAS G12D反应性TCR共表达的CD40非抗原嵌合受体(NACRS)。我们的CD40 NACR包含融合到跨膜和细胞质结构域的CD40的外元结构域,这些结构域衍生自10个不同的受体家族(例如IL-2R,TLR,TNF等)。但是,包括野生型CD40在内的一些基于CD40的受体在体外有效地增强了肿瘤细胞系的杀死。评估CD40 NACR的功能的结果,我们用抗CD40抗体刺激T细胞,并针对磷酸化-STAT5或效应细胞因子(如IFN-G和TNF)进行了细胞内染色。我们通过与胰腺癌和结直肠癌细胞系共同培养CD40 NACR的体外杀死能力,表达HLA-C*08:02和KRAS G12D。尽管有一些受体的生物化学活性证据,但大多数CD40 NACR并未显着增强T细胞对测试癌细胞系的体外杀伤能力。令人惊讶的是,在没有抗CD40抗体的情况下可以看到其中一些受体的增强效力,这表明内源性CD40L表达可能有助于增加T细胞效应子功能。总体而言,我们的研究强调了CD40基因工程增强收养细胞疗法的潜力。我们的铅基于CD40受体的其他表征正在进行中。
自从批准了多种针对非霍奇金淋巴瘤 (NHL) 的 CD19 靶向嵌合抗原受体 T 细胞 (CAR-T) 疗法以来,治疗手段得到了显著扩展。这些 CAR-T 是针对特定患者的,需要复杂、耗费资源和时间的过程。虽然这看起来很有希望,但由于缺乏可及性、制造延迟和产品质量不稳定,自体 CAR-T 受到限制。为了克服这些问题,来自健康捐赠者的同种异体 (allo) CAR 似乎很有吸引力。这些可以立即作为标准化和优质“现成”即用型产品提供,不受免疫抑制肿瘤微环境和先前治疗的影响,并且可能通过工业化规模生产降低医疗保健利用率。然而,同种异体 CAR 并非没有并发症,需要进行基因组编辑,尤其是使用 αβ T 细胞以避免移植物抗宿主病 (GvHD) 和受体免疫系统的同种异体排斥。TALEN 和 CRISPR 等基因组编辑工具有望开发真正“现成的”通用 CAR,并进一步推动细胞免疫治疗领域的发展。目前有几种同种异体 CAR 处于早期临床试验阶段,初步数据令人鼓舞。需要更长时间的随访才能真正评估这些技术对患者的可行性和安全性。本综述重点介绍开发同种异体 CAR 的策略以及迄今为止在淋巴瘤中的细胞来源和临床经验。
前两种自体 CAR-T 细胞疗法 tisagenlecleucel (Kymriah®) 和 axicabtagene ciloleucel (Yescarta®) 于 2017 年获得美国食品药品管理局批准。2020 年,FDA 批准了 brexucabtagene autoleucel (Tecartus TM )。Lisocabtagene maraleucel (Breyanzi®) 和 idecabtagene vicleucel (Abecma®) 于 2021 年获得批准。Ciltacabtagene autoleucel (Carvykti TM ) 于 2022 年 3 月获得批准。这些产品和其他目前正在开发的产品要投入临床实践,需要各方充分了解在癌症患者中使用这些个性化“活”生物制剂的技术和医疗管理。本出版物将解释 CAR T 细胞疗法背后的原理,描述已批准的疗法,总结迄今为止的疗效结果,详细说明已出现的重大风险,提供实用的医疗管理信息,并强调该疗法预期融入临床实践所涉及的一些独特挑战。
近年来,线粒体因其在许多重要生物现象中的作用而获得了与疾病相关的生物医学研究的广泛认可,包括代谢、生物合成、细胞存活/死亡程序、信号通路等。1-4因此,在癌症等疾病状态下靶向和扰乱线粒体功能已成为一种新的治疗策略。5-7有趣的是,线粒体含有自己的一组 DNA、RNA 和核糖体,可通过保守的线粒体转录和翻译途径合成 OXPHOS 相关蛋白。8-10因此,破坏与小分子路线相关的线粒体“中心法则”被发现有助于改善治疗结果和克服耐药性。11,12然而,在癌细胞的细胞环境中选择性靶向线粒体仍然是一项艰巨的任务
** 通信至:16 17 M. Anwar Hossain,博士 18 教授 19 微生物学系 20 达卡大学,孟加拉国达卡 21 电子邮件:hossaina@du.ac.bd 22 或者,23 Drs.马里兰州Mizanur Rahaman 24 助理教授 25 微生物学系 26 达卡大学,孟加拉国达卡 27 电子邮件:razu002@du.ac.bd 28 29 30 31 32
T细胞修饰,对B细胞恶性肿瘤的治疗表现出了巨大的希望。成功地将CAR-T细胞疗法转化为其他肿瘤类型(包括实体瘤)是下一个重大挑战。随着构成多种遗传修饰的第二代CAR-T细胞的领域进展,正在开发更复杂的方法和工具。病毒载体,尤其是C返回病毒和慢病毒,由于其高转导效率而被用于CAR -T细胞工程。但是,有限的遗传货物,良好的制造实践(GMP)条件下的高生产成本以及高监管要求是广泛临床翻译的障碍。为了克服这些局限性,正在临床前或临床水平探索不同的非病毒方法,包括转座子/转座酶系统以及mRNA电穿孔和非整合DNA纳米摩析器。基因组编辑工具,允许对特定基因的有效敲除和/或将汽车和/或其他转基因的站点指导整合到基因组中进行,也正在评估用于CAR-T细胞工程。在这篇综述中,我们讨论了用于产生CAR-T细胞的病毒和非病毒载体的发展,重点是它们的优势和局限性。我们还使用不同的基因工程工具讨论了从临床试验中学到的经验教训,并特别关注安全性和有效性。