已经开发了体外化学抗性和化学敏化测定,以提供有关个体患者恶性肿瘤特征的信息,以预测其癌症对特定药物的潜在反应性。肿瘤学家有时可能会使用这些测定方法为患者选择治疗方案。已经开发了几种关于生物样品处理和检测方法的不同测定法。然而,所有这些都涉及类似的原理和共享方案组件,包括:(1)在体外培养基中(有时在软琼脂中)分离细胞和建立; (2)细胞与各种药物一起孵育; (3)评估细胞存活; (4)对结果的解释。在人类试验中对多种化学敏感性和化学抗性测定进行了临床评估。所有测定方法都使用细胞生理学的特征来区分可行的细胞和不可生存的细胞,以量化暴露于感兴趣的药物后的细胞杀死。除了少数例外,在测定中使用的药物剂量根据肿瘤类型和药物类别而变化很大,但是所有测定都需要药物暴露范围从低于生理学相关性的几倍到高于生理相关性的几倍。
1. Hendriks RW, Yuvaraj S, Kil LP。针对 B 细胞恶性肿瘤中的布鲁顿酪氨酸激酶。Nat Rev Cancer。2014;14(4):219-232 2. Pal Singh S, Dammeijer F, Hendriks RW。布鲁顿酪氨酸激酶在 B 细胞和恶性肿瘤中的作用。Mol Cancer。2018;17(1):57。 3. Preetesh J 等人。Br J Haematol。2018;183(4):578-87 4. Xu L 等人。Blood。2017;129(18):2519-2525 5. Woyach J 等人。Blood。2019;134(1):504 6. Wang H 等人。在 EHA 2023 上发表的海报;摘要编号:P1219 7. Feng X 等人在 EHA 2023 上发表的海报;摘要编号:P1239 8. Seymour JF 等人在 ASH 2023 上发表的海报;海报编号 4401 9. Parrondo R 等人在 EHA 2024 上发表的口头报告;S157 10. https://clinicaltrials.gov/study/NCT05006716 11. https://ir.beigene.com/news/beigene-s-bgb-16673-receives-us-fda-fast-track-designation-for-cll-sll/ed433e34-61fd-4d89-
• Adstiladrin (2022) • Vyjuvek (2023) • Elevidys (2023) • Roctavian (2023) • Lyfgenia (2023) • Casgevy (2023, 2024) • Lenmeldy (2024) • Beqvez (2024) • Tecelra (2024) • Aucatzyl (2024) • 科比利迪 (2024)
中枢神经系统原发性弥漫大 B 细胞淋巴瘤 (PCNSL) 是一种罕见但侵袭性强的淋巴瘤,通常局限于脑、脊髓、软脑膜、脑脊液和/或玻璃体视网膜空间,不影响全身。1,2 尽管随着治疗方法的不断发展,这些患者的预后有所改善,1 但一线治疗后未达到完全缓解 (CR)(即原发性难治性)的患者或在自体干细胞移植 (ASCT) 后复发的患者生存率较低。3 目前尚无关于这些患者最佳挽救治疗的共识,3 并且已采用不同的治疗策略并取得一定成功。3,4 针对 CD19 的嵌合抗原受体 T 细胞 (CAR-T) 疗法被批准用于治疗全身复发或难治 (R/R) 弥漫大 B 细胞淋巴瘤。 5-7 然而,这些关键试验并未纳入 PCNSL 患者,并且 PCNSL 患者被明确排除在 axicabtagene ciloleucel (axi-cel)、tisagenlecleucel (tisa-cel) 和 lisocabtagene maraleucel (liso-cel) 标签之外。8 自 CAR-T 在美国和欧洲获批以来,已有 4 项小型研究(患者数=5-27)报告了 CAR-T 在 PCNSL 中的初步活性和毒性,这些研究的随访时间相对较短。9-12 我们在此使用来自国际血液和骨髓移植研究中心登记处的数据,对 2019 年 1 月至 2022 年 3 月期间接受商业 CAR-T 细胞疗法的 R/R PCNSL 患者进行了分析。研究人群包括连续、同意的患者(≥18 岁),诊断为 R/R PCNSL,并在指数期间接受了市售 CAR T 细胞疗法(即 axi-cel 或 tisa-cel)。没有患者因年龄、合并症、产品类型或数据完整性而被排除。来自禁运中心的患者被排除在外。主要终点是总生存期 (OS),定义为从 CAR T 输注到因任何原因死亡的时间。次要终点包括第 100 天的总有效率 (ORR)、无进展生存期 (PFS)(定义为从 CAR-T 到复发/进展性疾病 (PD) 或因任何原因死亡的时间,以先发生者为准)、复发或进展的累积发生率、非复发死亡率 (NRM)、死亡原因、CAR-T 输注后第 30 天任何级别严重细胞因子释放综合征 (CRS) 和免疫效应细胞相关神经毒性综合征 (ICANS) 的累积发生率(ASTCT 标准 13 定义),以及中性粒细胞和血小板恢复情况。累积发生率函数用于估计复发/进展、NRM、CRS 和 ICANS,Kaplan-Meier 估计量用于
全基因组关联研究已发现许多与复杂疾病相关的常见和罕见种系遗传变异,包括单核苷酸多态性 (SNP)、拷贝数变异 (CNV) 和其他组成结构变异。然而,很大一部分疾病易感性仍无法解释,通常称为缺失遗传性。一个越来越受关注的领域是受精后出现的遗传变异,称为嵌合体突变,发生在细胞分裂过程中。携带有害突变的细胞可能通过修复机制、细胞凋亡或免疫监视被消除,而其他细胞可以将其突变传递给子细胞。因此,在早期胚胎发育过程中,每次细胞分裂都会保留一个或多个合子后突变。随着发育的进展,这些突变不断积累,导致细胞间基因组景观多样化。因此,大多数细胞最终携带独特的基因组。虽然许多嵌合体突变可能是中性的,但某些突变可能是致病的。嵌合体可发生在体细胞和生殖细胞中,体细胞嵌合体最近因其在神经遗传疾病中的潜在作用而受到关注。合子后突变涵盖所有主要的突变类型,包括染色体非整倍体、大规模结构异常、CNV、小插入/缺失和单核苷酸变异。其中,嵌合性染色体改变,也称为体细胞CNV(sCNV),通常是由于胚胎发生过程中的染色体不稳定性造成的。这些突变主要发生在合子后或胚胎发育早期,偶尔由合子后对减数分裂错误的部分挽救而引起,导致细胞亚群携带这些突变。值得注意的是,sCNV 在人类神经元中大量存在(1)。大脑主要从外胚层发育而来,而血细胞起源于中胚层。细胞比例高的体细胞突变更有可能发生在发育早期。如果这些突变出现得足够早,例如在原肠胚形成期间或之前,它们可能同时存在于脑细胞和血细胞中。随着个体年龄的增长,克隆性造血会导致血细胞中积累大量高细胞分数体细胞突变,而这些突变可能不存在于其他组织中。因此,分析年轻个体血液的基因组数据可以识别与大脑共有的体细胞突变,为了解脑部疾病的遗传易感性提供有价值的见解(图 1)。目前至少有 8 个实验平台可用于检测 sCNV。表 1 比较了这些分子检测的分辨率、优点和缺点。其中,
摘要。背景/目的:转移性黑色素瘤患者的治疗选择有限,诊断也较差。因此,治疗的发展需要一种新的治疗方法,其中可以提出使用 rAAV 载体进行基因治疗。本研究的目的是检查 rAAV 载体在体外和体内转导小鼠黑色素瘤细胞的效率。材料和方法:实验中使用了在鸡 β-肌动蛋白和巨细胞病毒启动子的控制下编码 GFP 的不同 rAAV 血清型。使用定量 PCR 和免疫组织化学染色测试了 rAAV 载体的鼻内、腹膜内、静脉内和肿瘤内给药途径。结果:在鼻内给药 10 10 gc/0.03 ml 剂量的 rAAV/DJ-CAG 7 天后,在体内转移性细胞中观察到最高的转导效率。结论:基于 rAAV 载体的黑色素瘤基因治疗是一种可能的治疗选择。黑色素瘤是一种源自色素细胞(黑色素细胞)的肿瘤,黑色素细胞从外皮的神经组织中发展而来。黑色素瘤最常见的起点是皮肤,但也可能形成于胃肠道粘膜或眼球内。这是一种具有高转移潜力的癌症(1,2)。尽管抗癌治疗取得了进展,但因黑色素瘤导致的死亡人数仍然
蛋白水解靶向嵌合体 (PROTAC) 已被开发为一种有用的靶向蛋白质降解技术。双功能 PROTAC 分子由目标蛋白质 (POI) 的配体(主要是小分子抑制剂)和 E3 泛素连接酶 (E3) 的共价连接配体组成。与 POI 结合后,PROTAC 可以募集 E3 进行 POI 泛素化,然后进行蛋白酶体介导的降解。PROTAC 补充了基于核酸的基因敲除/敲除技术,用于靶向蛋白质减少,并可以模拟药理学蛋白质抑制。迄今为止,已成功开发出靶向约 50 种蛋白质的 PROTAC,其中许多是经过临床验证的药物靶标,其中几种正在进行癌症治疗的临床试验。本文回顾了 PROTAC 介导的癌症(特别是血液系统恶性肿瘤)中关键癌蛋白的降解。总结了这些PROTAC的化学结构、细胞和体内活性、药代动力学和药效学。此外,还讨论了PROTAC技术在癌症治疗中的潜在优势、挑战和前景。
1。BékésM和Al。 nat Rev Discov。 2022; 21(3):181-200。 2。 汉密尔顿EP和Al。 ESMO演示; 10月20日至24日,2023年;西班牙马德里。 海报390p。 3。 hurvitz sa和al。 SABC演示;欺骗者5–9,2023;美国德克萨斯州圣安东尼奥市。 海报PO3-05-0 4。 sm gow和al。 Clins Ress。 2024; 30:3549-63。 5。 isaacs c和al。 SABC演示;欺骗者5–9,2023;美国德克萨斯州圣安东尼奥市。 海报PO2-20-04。 6。 姿势m和al。 J Pharmacol Clin。 2020; 60:915-3 承认BékésM和Al。nat Rev Discov。2022; 21(3):181-200。2。汉密尔顿EP和Al。ESMO演示; 10月20日至24日,2023年;西班牙马德里。海报390p。3。hurvitz sa和al。SABC演示;欺骗者5–9,2023;美国德克萨斯州圣安东尼奥市。海报PO3-05-04。sm gow和al。Clins Ress。2024; 30:3549-63。5。isaacs c和al。SABC演示;欺骗者5–9,2023;美国德克萨斯州圣安东尼奥市。海报PO2-20-04。6。姿势m和al。J Pharmacol Clin。2020; 60:915-3承认
嵌合抗原受体(CAR)-T细胞疗法在血液学恶性肿瘤中表现出显着的功效,正在扩展到包括脑部在内的难治性实体瘤的治疗。淋巴结序(LD)是一个必不可少的预处理过程,通过促进CAR-T细胞的扩张和体内持久性来增强CAR-T功效,并已成为血液学癌症的标准方案。CAR-T治疗对实体瘤的最新临床结果,包括脑肿瘤,表明环磷酰胺/基于氟达拉滨的预处理具有潜在的好处,并且正在实体瘤CAR-T试验中逐渐被采用。此外,一些针对固体TUMOR的CAR-T试验正在尝试开发专门针对实体瘤的LD方案,这与血液学癌症中使用的标准LD方案不同。相比之下,针对脑肿瘤的CAR-T治疗经常在肿瘤或脑脊液中使用局部重复给药,与其他实体瘤相比,LD的使用频率较低。然而,一些临床研究表明,LD仍可能为CAR-T扩展和全身性CAR-T给药的临床反应改善提供潜在的好处。本综述中提出的研究表明,尽管LD可以有益于提高CAR-T效力,但必须考虑其与CAR-T给药途径的兼容性,基于CAR-T结构特征的潜在过度激活以及在正常器官中的靶标表达。此外,鉴于脑部TUMOR的独特特征,可能需要优化的LD剂选择以及剂量和方案,从而突出了进一步研究的需求。
使用生物材料(细胞,组织和器官)制造活机是发育生物学和现代生物医学的挑战之一。再生潜力和免疫自卫机制的约束限制了该领域的进步。在这里,我们提出了与新的新兴参考物种的自我识别和祖先神经免疫体系结构有关的意外特征 - cenophores或梳子果冻。这些是最早生存的后代谱系的后代,具有独特的组织,器官和独立的动物特征的独立起源,例如神经元,肌肉,中胚层和穿透。因此,与双遗嘱人相比,c养家会趋于发展的复杂组织。然而,它们的神经和免疫系统可能在功能上耦合,从而实现了混合神经系统甚至整个动物的设计和实验构造。本报告说明了使用CTENOPHORES作为生物工程模型来建立嵌合动物和神经机器人的令人印象深刻的机会。来自三种c型物种(Bolinopsis,mnemiopsis和pleurobrachia)获得的神经动物和嵌合动物能够自主并生存数天。总的来说,生物多样性,细胞生物学和神经科学的统一为实验合成生物学打开了前所未有的机会。