信号换能器和转录3(STAT3)的激活因子在癌症的进展中的关键作用被认可,在癌症的进展中,它经常被上调或组成性地过度活化,有助于肿瘤细胞的增殖,生存和迁移,以及血管生成,以及血管生成以及抗肿瘤免疫的血管生成和抑制。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。 然而,靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。 针对STAT3的小分子抑制剂受到选择性和效力不足的限制。 最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。 在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。 这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。针对STAT3的小分子抑制剂受到选择性和效力不足的限制。最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。
摘要:对癌症生长和增殖的分子机制的理解不断深入,推动了以癌症驱动分子为靶点的药物的飞速发展。大多数靶分子是蛋白质,例如激酶和激酶相关受体,它们具有细胞信号级联所需的酶活性。这些靶分子的小分子抑制剂大大提高了治疗效果,降低了癌症治疗中的全身毒性。然而,长期大剂量使用小分子抑制剂治疗癌症也带来了其他障碍,例如对抑制剂的耐药性。在克服癌症耐药性的最新方法中,靶向蛋白质降解 (TPD) 如蛋白水解靶向嵌合体 (PROTAC) 技术采用了一种独特的作用机制,即通过细胞蛋白水解系统(例如泛素-蛋白酶体系统或自噬)破坏靶蛋白。在这里,我们回顾了目前开发的 PROTAC 作为癌症治疗的代表性 TPD 分子和 N-降解途径的 N-降解作为潜在的 TPD 配体。
通过化学诱导二聚化 (CID) 进行基因调控对生物医学研究很有用。然而,CID 工具的数量、类型、多功能性和体内应用有限。在这里,我们展示了针对嵌合体的可扩展 CID (PROTAC-CID) 平台的蛋白水解,通过系统地设计可用的 PROTAC 系统进行可诱导的基因调控和基因编辑。此外,我们开发了正交 PROTAC-CID,可以在梯度水平上微调基因表达或使用不同的逻辑门控操作多路复用生物信号。将 PROTAC-CID 平台与基因电路结合,我们实现了 DNA 重组酶、碱基编辑器和主要编辑器的数字诱导表达,用于瞬时基因组操作。最后,我们将紧凑的 PROTAC-CID 系统打包到腺相关病毒载体中,用于体内诱导和可逆的基因激活。这项工作提供了一个多功能的分子工具箱,扩大了人类细胞和小鼠中化学诱导基因调控的范围。
原理:蛋白水解靶向嵌合体 (PROTAC) 是一种双功能化合物,因其在靶向蛋白质降解 (TPD) 中的作用而受到广泛研究。降解已验证或不可成药的靶标的能力使 PROTAC 在癌症治疗中具有显着的效力。然而,PROTAC 的临床应用受到其体内效力差和药代动力学特性不利的限制。方法:在本研究中,通过将 BRD4 降解 PROTAC 与 ROR1(受体酪氨酸激酶样孤儿受体 1)抗体结合,开发了一种新型降解剂-抗体偶联物 (DAC)。评估了 ROR1 DAC 的体外亲和力、内化功效、降解和细胞毒活性。在小鼠模型中评估了 ROR1 DAC 的药代动力学、抗肿瘤活性和急性毒性。通过RNA测序(RNA-seq)和免疫组织化学方法分析ROR1 DAC与抗鼠程序性细胞死亡蛋白1(αmPD1)mAb联合治疗的疗效。
2001年Crews首次提出利用细胞内固有蛋白质降解机制(泛素-蛋白酶体系统)消除致病蛋白的概念,即蛋白水解靶向嵌合体(PROTACs)[1]。2017年以来PROTAC技术进入加速发展期[2]。根据PROTAC-DB [3] 的不完全统计,目前共有5388个PROTAC分子,其中26个PROTAC分子已进入临床试验,涉及实体瘤、血液系统癌症、自身免疫性疾病等适应症(图1)[4-6]。在过去的20年里,研究人员认识到PROTAC技术的巨大潜力,并明确了其局限性,例如溶解性和生物利用度差、对健康组织有潜在毒性(靶向和脱肿瘤毒性)[7,8]。因此,目前的前沿研究主要集中于解决PROTAC的缺点,并通过其他技术手段提高药物的可利用性,如纳米材料技术[9-11]和前体药物策略[12-14]。PROTAC技术对药物治疗产生了革命性的影响,为研究提供了新的工具
摘要:药物化学工具箱的扩展符合药物设计师的切身利益,他们面临着为不断增加的生物靶点空间寻找分子解决方案的任务。然而,即使在药物发现界,创新的传播也可能是一个漫长的过程,因为药物发现界面临着及时为患者制定有效解决方案的巨大压力。沿着这个思路,亚砜亚胺基团的使用在药物化学中达到临界点花了近 70 年的时间。尽管近年来人们对这种多功能功能组的兴趣呈指数级增长,但仍有足够的空间进行进一步的创新应用。这篇小综述重点介绍了药物设计师在药物化学中使用亚砜亚胺基团的新兴趋势和机会,例如在复杂分子的构建、蛋白水解靶向嵌合体 (PROTAC)、抗体-药物偶联物 (ADC) 和用于共价抑制的新型弹头中。
醛酮还原酶 1C3 (AKR1C3) 是一种在前列腺癌、血液系统恶性肿瘤和其他癌症中上调的蛋白质,它会导致增殖和化疗耐药性。雄激素受体剪接变体 7 (ARv7) 是 AR 受体最常见的突变,它导致去势抵抗性前列腺癌对临床雄激素受体信号抑制剂产生耐药性。AKR1C3 与 ARv7 相互作用促进稳定。我们在此报告了同类首创的 AKR1C3 蛋白水解靶向嵌合体 (PROTAC) 降解剂的发现。这种第一代降解剂有效降低了 22Rv1 前列腺癌细胞中的 AKR1C3 表达,半最大降解浓度 (DC 50) 为 52 nM。令人欣慰的是,观察到 ARv7 同时降解,DC 50 = 70 nM,同时 AKR1C3 同工型 AKR1C1 和 AKR1C2 降解程度较小。该化合物是一种非常有用的化学工具,也是前列腺癌干预的有前途的策略。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
au:preeconfirnheadinglevelsarreepressedCornectedCorcely:噬菌体编码抗蛋白蛋白(ACR)蛋白质,使CRISPR-CAS细菌免疫系统失活,允许成功入侵,复制,复制和预测整合。ACR蛋白使用多种机制抑制CRISPR-CAS系统。acriia1由许多噬菌体和质粒编码,专门与Cas9 HNH结构域结合,是第一个发现抑制spycas9的ACR。在这里,我们报告了ACRIIA1诱导的spycas9和saucas9在人类细胞培养中的降解的观察,这是人类细胞中ACR诱导的CRISPR-CAS核酸酶降解的首次检查。acriia1诱导的spycas9降解被Acriia1中的突变所消除,这些突变破坏了两种蛋白质之间的直接物理相互作用。Acriia1靶向CAS9蛋白降解可以调节人类疗法中的Cas9核酸酶活性。ACRIIA1的小尺寸和特异性可用于CRISPR-CAS蛋白水解靶向嵌合体(Protac),提供了一种用于开发安全且精确的基因编辑应用的工具。
DNA,并使用贴纸确定DIN评分。使用XGEN CFDNA和FFPE DNA库Prep V2 MC Kit从DNA的25 ng输入中制备示例库,并带有UG库放大套件和自定义IDT索引引物等效于XGEN索引引物,以实现Ultima P1。在图1中,挂毯痕迹(安捷伦)显示了从低质量的FFPE样品中生成的PCR放大库。即使在DIN得分低的情况下也产生了质量库,而没有任何适配器二聚体的证据。表2显示了从UG 100序列上的12 XGEN CFDNA和FFPE库中获得的质量测序指标。图书馆的读取与参考基因组有很高的读数,并且在DIN水平不同的样品中的结果一致。数据显示较低的Indel,不匹配和嵌合体速率以及Q20高的Q20,表明在UG 100系统上生成了质量测序读数。表表示三个重复的平均值。