*我们很自豪地说我们是免费的孩子的屏幕。我们实用的,动手的方法可以吸引儿童并建立技能,而无需技术。但是,调查人员可以选择使用技术来展示他们的学习,例如拍摄视频,拍照或录制音符。
(2) 美国国家海洋和大气管理局 (NOAA) 出版的《美国海岸航海指南》是一系列十本航海书籍(卷),涵盖了对美国沿海/内陆水域和五大湖水域航海者来说十分重要的各种信息。《海岸航海指南》旨在作为 NOAA 航海图的补充。许多内容无法以图形方式显示在海图上,而且在其他地方也不容易找到。涵盖的主题包括天气、气候、冰况、潮汐、水位、洋流、突出的沿海特征和地标等环境因素。还提供了有关垂直净空、码头描述、小型船舶设施、危险、疏浚航道和深度的具体信息。还列出了航行服务和法规,包括引航、拖航、锚地、航线和分道通航方案、环境保护和其他联邦法律。
港口特点 位于密歇根湖畔,距威斯康星州密尔沃基以北 115 英里,距格林贝以东 30 英里,位于威斯康星州基瓦尼县基瓦尼市 授权:1881 年 3 月 3 日、1910 年 6 月 25 日、1935 年 8 月 30 日、1960 年 7 月 14 日的河流与港口法案 深吃水港口,联邦水道长约 5,500 线性英尺 授权项目水道深度为 20 英尺 6,992 英尺的带盖木垛、钢板桩和碎石堆防波堤和桥墩结构 从水道中清除的沉积物放置在基瓦尼封闭式处置设施(CDF)内 主要利益相关者:美国陆军工程兵团政府浮动工厂、基瓦尼市、美国鱼类和野生动物管理局和威斯康星州自然资源部
港口特点 位于威斯康星州基诺沙县基诺沙市的密歇根湖畔。 授权:1899 年 3 月 3 日的《河流与港口法案》。 深吃水港口,主要服务于休闲用户。联邦航道长约 5,000 英尺。 授权深度为内港 25 英尺、外港 26 英尺和进近航道 27 英尺。根据当前港口使用情况,联邦航道深度通常保持在 20 英尺。 3,048 线性英尺的木垛和钢板桩防波堤和桥墩结构。 港口的一些沉积物可能不适合开放湖泊/近岸,需要高地放置。 2021 年装运/接收货物 1.4K 吨 主要利益相关者:美国海岸警卫队、基诺沙市和威斯康星州自然资源部。
港口特征 该项目位于密歇根上半岛的基威诺半岛,介于基威诺湾和苏必利尔湖之间。西上入口位于明尼苏达州德卢斯以东 169 英里处,东下入口位于密歇根州马凯特以西约 60 英里处。 授权:1865 年 3 月 3 日、1866 年 7 月 3 日、1869 年 4 月 10 日、1871 年 3 月 2 日、1872 年 3 月 27 日、1873 年 3 月 3 日、1886 年 8 月 5 日、1890 年 9 月 19 日、1898 年 3 月 15 日、1910 年 6 月 25 日、1919 年 3 月 2 日、1935 年 8 月 30 日的《河流与港口法案》 深吃水商业水道项目 项目水深:上入口航道 32 英尺、下入口航道 28 英尺、内河航道 25 英尺 超过 24,300 英尺的建筑结构,包括防波堤、桥墩和护岸 超过 18 英里的维护航道 基威诺水道密闭处置
8:30 - 9:00 am 注册和咖啡/茶 9:00 - 9:10 am 欢迎致辞(吴晓华,斯克里普斯研究中心) 9:10 - 10:25 am 报告环节 1:DNA 修复和基因组稳定性(环节主席:Rémi Buisson,UCI) 9:10 - 9:25 am Tony Fernandez 博士(希望之城沈丙辉实验室)DNA2 和 MSH2 活动共同去除化学稳定的 G4 以实现高效端粒复制 9:25 - 9:40 am Pedro Ortega 博士(Rémi Buisson 实验室,加州大学欧文分校) 复制灾难期间的叉断裂机制 9:40 - 9:55 am Christine Joyce (Chris Richardson 实验室,加州大学圣塔芭芭拉分校) FANCD2-FANCI 异二聚体在双链断裂后调节 DNA 修复活性和细胞周期进程 9:55 - 10:10 am Ting Zhao (Yinsheng Wang 实验室,加州大学欧文分校) N2-烷基-Dg 结合蛋白的鉴定和功能特性 10:10 - 10:25 am Nadejda Butova (Irene Chiolo 实验室,南加州大学) Ulp1:异染色质修复的时钟 10:30 – 11:00 am 海报闪电演讲 11:10 – 12:45 pm 海报会议 12:45 – 1:30 pm 午餐 1:30 – 2:45 pm 演讲第 2 场:基因组学和基因编辑(会议主席:Shannon Miller,斯克里普斯研究中心) 下午 1:30 – 1:45 Peter Chovanec 博士(加州大学洛杉矶分校 Yi Yin 实验室)面向体内自发基因组不稳定性事件的单细胞图谱 下午 1:45 – 2:00 Xiaoyu (Lydia) Chen(加州大学欧文分校 Audrone Lapinaite 实验室)从结构到功能:脱氨酶结构域二聚化和 Cas9 相互作用如何提高 ABE8e 中的碱基编辑效率 下午 2:00 – 2:15 Mallory Evanoff 博士(加州大学圣地亚哥分校 Alexis Komor 实验室)定向进化逆转分析产生最小突变的腺嘌呤碱基编辑器变体,并提高效率和精度。 2:15 – 2:30 pm Seanmory Sothy(Linlin Zhao 实验室,UCR)基于质谱的碱基切除修复中间体定量 2:30 – 2:45 pm Shuvro P. Nandi 博士(Ludmil B. Alexandrov 实验室,UCSD)UDSeq:一种用于精确全基因组识别体细胞突变的通用双链测序。 2:45 – 3:15 pm 咖啡休息 3:15 – 4:30 pm 讲座环节 3:染色体重排和癌症治疗(环节主席:Irene Chiolo,南加州大学) 3:15 – 3:30 pm Sameer Shah 博士(Xiaohua Wu 实验室,斯克里普斯研究中心) 53BP1 缺陷导致通过断裂诱导复制 (BIR) 的过度重组 3:30 – 3:45 pm Kaela Makins (Jeremy Stark 实验室,希望之城) 定义染色体断裂修复过程中 DNA-Pkcs 和 RIF1-53BP1 之间的相互作用 3:45 – 4:00 pm Megha Raghunathan (Svasti Haricharan 实验室,SDSU) 错配修复基因特异性对乳腺肿瘤形成、进展和基因组不稳定性的影响 4:00 – 4:15 pm Shuangshuang Xie 博士(加州理工学院 Dan Semlow 实验室)微生物组衍生的 Colibactin 基因毒素可激活 cGAS-STING 依赖的促炎症信号传导 4:15 – 4:30 pm Ya Allen Cui 博士(加州大学魏李实验室)串联重复变异与人类健康和疾病的关系 4:30 – 4:45 pm 海报奖颁奖(斯克里普斯研究中心 Katja Lamia)闭幕词 5:00 – 6:30 pm 晚餐 (与教授见面:职业发展) 6:30 pm 研讨会结束
招募 ● 对患有急性呼吸道疾病 (ARI) 的门诊患者(初级保健、紧急护理、急诊科、远程医疗)进行前瞻性筛查。 ● 2023 年 10 月 20 日 – 2024 年 5 月 24 日。 资格标准 ● 年龄 6 个月 – 64 岁。 ● 咳嗽且病程 ≤7 天的 ARI。 ● 未服用流感抗病毒药物。 流感病例状况 ● 使用多重实时逆转录聚合酶链反应 (RT-PCR) 检测呼吸道标本以识别流感病例;对照组为流感阴性。 ccIIV4 疫苗收据 ● 发病前 ≥14 天(年龄≥9 岁)或根据美国免疫实践咨询委员会 (ACIP) 建议(年龄<9 岁)收据记录。 ccIIV4 疫苗有效性 (VE) ● 使用逻辑回归模型,估计为 1 – 比值比 x 100%,并预先调整年龄和日历时间。● 分析仅限于 ccIIV4 接种者和未接种疫苗的参与者。
例如,启动的 AB 32 气候立法和第一个范围界定计划确定了到 2020 年将 AB 32 温室气体排放量减少到 1990 年水平的目标。认识到进一步采取气候行动的必要性和纽约州在实现 2020 年目标方面取得的进展,特别是在交通运输和电力部门的减排方面,后续立法(SB 32)和 2017 年范围界定计划更新设定了一个新目标,即到 2030 年将排放量减少到 1990 年水平的 40% 以下。最近在 2022 年,碳中和立法(AB 1279)和最新的 2022 年范围界定计划更新设定了新目标,即到 2045 年将人为排放量减少到 1990 年水平的 85% 以下,并在 2045 年实现碳中和。2022 年范围界定计划更新还确定,到 2030 年需要实现比 2017 年范围界定更新要求更大的减排量,才能按计划实现2045 年目标。
PCGI的使命是了解基因组完整性如何影响人类生物学。这需要一种全面的方法,该方法将参与研究的实验室联系起来,基因组完整性的基本原则与其他重点是受基因组不稳定性影响的生物后遗症。这种哲学将PCGI与其他机构的基因组完整性中心区分开。我们将重点关注免疫学,干细胞功能,病毒学和发育的实验室进行了DNA复制,DNA修复和有丝分裂的基本机制的研究。PCGI的另一个区别特征是参与实验室采取的方法的广度,范围从分子和细胞生物学,结构生物学,合成生物学,进化生物学,化学生物学和生物工程学。如此广泛的方法对成功的P01应用有助于研究基因组不稳定性对癌症免疫反应的影响。PCGI实验室之间的互补方法还导致了其他赠款申请,学员奖和奖学金,高影响力协作出版物以及基础研究的翻译。