摘要:可以通过最大程度地减少电池热管理系统(BTM)的质量来增强电池组的电池组,这是电固定翼翼应用程序的限制。在本文中,在3D域中对BTMS的使用相变材料(PCM)进行数值探索,包括等效电路电池模型。针对有效的热管理的PCM特性的参数研究是针对典型的一小时传播的。PCM在整个电池组中保持理想的工作温度(288.15 K – 308.15 K)。PCM吸收起飞过程中产生的热量,随后用于在战的巡航阶段保持细胞温度。在控制案例(无BTM)中,电池组温度低于理想工作范围以下。我们进行了一项参数研究,强调了PCM热导率对BTMS性能的微不足道,并且在测试的窗口上观察到可忽略不计的增强(0.1-10 W m -1 K -1)。但是,PCM的潜在融合热量至关重要。PCM的开发人员用于电池供电的流量,无论对导热率的不利影响如何,都必须专注于增强的潜在融合热。在长途旅行中,延长的巡航阶段和较高的海拔刺激了这个问题。PCM的独特特征提供了一种被动的低质量解决方案,值得对流量应用进行进一步研究。
在事故航班的巡航阶段,副驾驶一直等到驾驶舱内只剩下他一个人。然后,他故意修改自动驾驶仪设置,命令飞机下降。尽管通过键盘和客舱对讲机发出了进入请求,但他在下降过程中一直锁着驾驶舱门。他没有回应民用或军用空中交通管制员的呼叫,也没有回应敲门声。由于安全要求,驾驶舱门被设计为可抵御未经授权人员的强行闯入,因此在飞机撞击法国阿尔卑斯山地形之前,无法进入驾驶舱。
这些排放物的水平会根据飞行阶段而有所不同。在巡航阶段,由于海拔较高,乘客接触到的臭氧水平较高。颗粒物、SO2、NOX、CO2 和CO 是废气中最常见的物质,因此当飞机在地面并吸入这些污染空气时,这些物质的水平会较高。2010 年,伦敦希思罗机场所有飞机地面排放量中有 19% 来自 APU。该机场的空气质量战略承诺为飞机提供更多的预处理空气装置,以减少地面对 APU 的使用要求,进而降低这些污染物的水平。这些污染物包括挥发性有机化合物 (VOC) 和半挥发性有机化合物 (SVOC),特别是有机磷酸酯 (OP) 中的磷酸三甲苯酯 (TCP) 和磷酸三丁酯 (TBP)。
因此,随着对电力需求的增加,传统的液压和气动系统、飞机的发电能力也需要显著提高。目前,每架 787 飞机都可以为其机载系统提供约 1,000kVA 的电力,而根据波音公司的数据,其机载系统和初创公司的大量计划都比上一代机型采用了某种形式的电力推进。机载系统目前正在开发中。这些不同的电力存储也显著增长。从小型通用航空飞机和城市机动性设计到军事领域,这一重大变革一直延续到 F-35 能够为商用客机提供电力。大约 400kVA,并且需要进一步升级。如果要实现后者类别的电动飞机,空客认为,传感器和系统将添加到平台中。起飞阶段需要 40MW 的功率,而巡航阶段则降至 20MW。系统消除了重量和复杂性。作为实现最终目标的一步,
与操作员疲劳相关的问题。首先,这些 UCA 可以全天 24 小时运行,这可能导致性能下降(由于夜间工作)(Basner 等人,2008 年)等。其次,为了降低运营成本并减少这些 UCA 巡航阶段的闲置,遥控飞行员可能还必须同时管理多架飞机。众所周知,执行任务的时间和增加的工作量都会增加操作员的疲劳(D’huyvetter,1988 年)。如果与喷气式飞机飞行员不同,UCA 遥控飞行员可以随时换班,那么仍然存在与疲劳相关的问题。特别是,美国联邦航空管理局 (FAA) 和美国空军报告了与操作长航时无人机(超过 24 小时)疲劳相关的安全问题,主要是由于轮班工作(Tvaryanas 等人,2008 年)。了解和减轻这些风险是一个重大的安全问题。因此,现有的空中交通服务和航空公司运营疲劳管理规定与 UAS 运营商息息相关。特别是,空中交通管制员的工作通常需要两小时轮班,而这些轮班时间可能会影响他们的工作表现,这似乎与 UAS 飞行员的工作非常相似。
与操作员疲劳相关的问题。首先,这些 UCA 可以全天 24 小时运行,这可能导致性能下降(由于夜间工作)(Basner 等人,2008 年)等。其次,为了降低运营成本并减少这些 UCA 巡航阶段的闲置,遥控飞行员可能还必须同时管理多架飞机。众所周知,执行任务的时间和增加的工作量都会增加操作员的疲劳(D’huyvetter,1988 年)。如果与喷气式飞机飞行员不同,UCA 遥控飞行员可以随时换班,那么仍然存在与疲劳相关的问题。特别是,美国联邦航空管理局 (FAA) 和美国空军报告了与操作长航时无人机(超过 24 小时)疲劳相关的安全问题,主要是由于轮班工作(Tvaryanas 等人,2008 年)。了解和减轻这些风险是一个重大的安全问题。因此,现有的空中交通服务和航空公司运营疲劳管理规定与 UAS 运营商息息相关。特别是,空中交通管制员的工作通常需要两小时轮班,而这些轮班时间可能会影响他们的工作表现,这似乎与 UAS 飞行员的工作非常相似。
摘要 襟翼轨道整流罩是每架现代商用飞机的常见功能。在最近的发展中,人们已经通过复杂的空气动力学设计做了很多工作来减少整流罩阻力。但是,始终存在显著的寄生阻力,在巡航期间的高空速下尤其明显,而巡航阶段不需要任何襟翼轨道启动,因此整流罩是部分寄生阻力和不必要的燃料消耗的原因。因此,避免这种整流罩阻力可以改善飞机的运营成本,并由于燃料消耗减少而增加有效载荷。由于在收起状态下,襟翼负载与需要坚硬、坚固且体积庞大的襟翼支撑的最后进近配置相比最小,因此在巡航期间,一个“较弱”和较小的机构和襟翼支撑系统就足够了。本论文介绍了如何设计集成襟翼轨道机构的基本概念,将其安装在襟翼向上位置的机翼边条中,同时满足气动襟翼设置要求。考虑了各种现实约束。该项目没有采用纯理论推理,而是选择了务实的实践方法。结果大多是通过直观和实验性的施工工作获得的,同时始终考虑到专业背景和项目应用的要求。前三章代表了学期论文
大多数主要飞机制造商和航空电子系统供应商都在开发支持单人驾驶客机的技术。巴西航空工业公司航空市场情报副总裁 Luiz Sergio Chiessi 表示,他们希望在 2020-25 年实现单人驾驶能力 1,2 。其他项目已经研究了在巡航阶段在长途飞机上只使用一名驾驶舱机组人员的可行性(例如欧洲 ACROSS 项目:用于减轻压力和工作量的先进驾驶舱)。空客前首席技术官 Paul Eremenko 公开表示,制造商正在开发允许一名飞行员驾驶客机的技术 3 。在英国,ATI 资助的未来飞行甲板和开放飞行甲板项目正在开展一项工作,以确定单机组客机的技术要求和机组人员策略。然而,美国宇航局艾姆斯研究中心航空学主任托马斯·爱德华兹表示,单机组飞机才刚刚开始。他最终表示,问题不在于是否应采用单人操作,而是“一名飞行员是否是实现零飞行员的合理垫脚石?” 4。
操作:任务从使用猎鹰 9 号从地球成功发射开始。进入地球轨道后,航天器执行一系列轨道调整,以达到前往火星所需的速度。发射后,航天器执行精确的轨道转移,以与前往火星的轨道对齐。此操作包括计算燃烧,以使航天器走上正确的路径,确保高效准确地到达红色星球。轨道转移后,航天器进入巡航阶段,在此期间它将穿越广阔的空间前往火星。在此期间,航天器可以进行系统检查、仪器校准和任何必要的航向修正,以微调轨道。当航天器接近火星时,它会执行进入轨道的关键操作。精心定时的燃烧使航天器能够减速并被火星引力场捕获。这标志着从行星际空间过渡到火星轨道。椭圆轨道的设计旨在优化观测和通信能力,使航天器能够在任务期间改变与火星的距离。一旦进入所需的椭圆轨道,航天器便开始其通信和观测任务目标,并开始收集数据。建立通信系统以促进数据传回地球。在整个任务期间,航天器继续在椭圆轨道内运行,并根据需要定期调整以保持最佳状态。这种适应性确保任务能够应对运行期间的动态因素和意外发现。
自航空业诞生以来,驾驶舱操作经历了重大变化。由于航空电子设备和通信技术的改进,客机的发展导致机组人员数量逐渐减少。随着飞行工程师、领航员和无线电操作员被新的玻璃驾驶舱功能所取代,机上人员从 5 人减少到 3 人,然后又减少到 2 人。到目前为止,尽管系统可靠性不断提高,但这一数字尚未减少。事实上,商业航空业最近才开始对单飞行员操作 (SPO) 产生兴趣。目标是评估可以将副驾驶员职责重新分配给可靠和自动化子系统和/或地面支持操作员的强大解决方案。对 SPO 的这种吸引力主要源于现代航空业预计将面临的挑战,包括预计的合格飞行员短缺 51 和不断增加的 27 空中交通(图 1)。考虑到这一点,一些公司正在为向 SPO 过渡做准备,SPO 有可能在长期内节省大量成本 4。事实上,到目前为止,许多专家都同意将这一变化视为一种经济效益。例如,瑞士联合银行 (UBS) 进行的一项研究表明,通过在商用航空中引入 SPO,全球航空公司将在长期内节省 150 亿美元 38 的运营成本。然而,尽管有这些潜在的好处,但关于安全性和人为因素的争论仍在继续,SPO 的技术、操作和商业可行性尚未得到证实。相反,所谓的扩展最低机组运营 (eMCO) 概念正在经历一个不那么麻烦的开发过程,它基于对现有设计的改进,其中 SPO 将仅限于飞行的巡航阶段(例如长途、跨大陆航班)。由于缺乏冗余副驾驶员交叉核对功能,单飞行员操作面临的主要挑战之一将是评估和预测单飞行员的任何高工作负荷情况,以便保持其对任务计划的心理状态并正确处理突然失能事件。此外,由于自动化将接管副驾驶员的一些任务,因此有必要设计一个合适的人机界面 (HMI),以适应操作员的心理状态。其他挑战通常与操作、通信程序和流程以及飞行员/机组人员的培训要求和系统完整性有关。向单飞行员操作的过渡还将需要彻底修改认证范式,考虑到从审议/反应系统向可根据操作条件扩展的混合自主系统的转变。目前,人们正在付出大量努力来评估某些新型飞行辅助系统的运行潜力,这些系统可以作为满足 SPO 提出的新要求的一种手段。学术界和工业界目前正在研究所谓的数字飞行助手 (DFA) 操作概念,以降低驾驶舱的复杂性并在紧张的决策过程中为飞行员提供支持,包括可能导致失能的决策过程。该系统通常旨在执行任务或基于传感器的飞行员认知状态实时评估,以提供特定警报,防止混乱或失去意识。