EMBRC旨在通过在挪威北部到热带以色列的所有欧洲海洋中提供无与伦比的海洋生态系统和生物多样性的访问,以支持私营部门的研究人员和蓝色经济专业人士。以及提供500多个科学服务,其EMO BON(欧洲海洋学生物多样性观察网络)倡议是一种可持续的海洋生物多样性天文台,它加深了我们对海洋生物多样性健康的理解。Emo Bon的数据促进了不同行业对海洋资源的知情和可持续管理:渔业和水产养殖,离岸可再生能源,港口和运输等。这样的举措证明,Embrc是知识转移的重要枢纽,并为伙伴关系提供了很多机会。
,例如青霉素,sterptymycin和risthomycin。淹没发酵用于生产各种酶,用于生产各种酶,例如淀粉酶,纤维素和蛋白酶。有机酸,例如柠檬酸,乳酸和乙酸。淹没发酵是一种工业生物技术中广泛使用的过程,用于生产各种生物产品,例如抗生素,酶,有机酸和生物燃料。此过程由于其对生长条件和可伸缩性的精确控制而提供了所需产品的高收益。但是,它也有一些缺点,例如高设备成本和污染风险,必须考虑在内。尽管存在这些挑战,但淹没的发酵仍有许多应用,预计将来将在工业生物技术中发挥越来越重要的作用。
摘要欧盟(EU)和德国的汽车行业面临着主要的挑战,包括脱碳,数字化和全球竞争。尽管汽车行业在收入和就业方面具有重要的经济作用,但它具有巨大的生态损害。绿色和数字过渡使某些职业多余,从而导致失业,而它在新的经济活动中产生了新的职业。这些行业成为德国和欧盟的社会生态转型辩论的中心。由于这些挑战,垂直的工业政策侧重于能源和技术密集型地区在欧盟和德国变得重要。欧盟和德国的工业政策遵循了一种具有“可持续竞争力”座右铭的生态现代化方法,从而将电动性转化视为脱碳,数字化和全球竞争力的最终途径。替代方法以不同的方式看。民主转化方法和降解方法,同时存在差异,两者都将电动性视为所需的全面流动系统转型的一部分;他们认为,面对气候危机,私人自动驾驶的下降和对劳动和环境利益相关者的更民主转型是必不可少的。联系人:nettekoven@eada.uni-frankfurt.de关键词:汽车行业,电动性,气候危机,工业政策,德国,欧盟jel代码:L50,L62,Q50确认:我要感谢HansjörgHerr,Christina Teipen,Christoph Scherer,Christoph Scherer,Bruno de conti和Praveen Jha和Praveen Jha的有用评论,以及Simon furse的有用评论。
CO 2 捕获站点 • Fortum 在 Klemetsrud 和 Norcem 在 Brevik 捕获 CO 2 并将其存储在本地码头 • 每个站点的存储量必须考虑到每四天船舶到达的情况以及整个链条中任何意外情况的缓冲 • 码头作业假定由捕获工厂完成
摘要 数字孪生 (DT) 主要是任何可想象的物理实体的虚拟复制品,是一项具有深远影响的高度变革性技术。无论是产品开发、设计优化、性能改进还是预测性维护,数字孪生都在通过多种多样的业务应用改变各个行业的工作方式。航空航天业(包括其制造基地)是数字孪生的热衷者之一,对其定制设计、开发和在更广泛的运营和关键功能中的实施表现出前所未有的兴趣。然而,这也带来了一些对数字孪生技术的误解,以及对其最佳实施缺乏了解。例如,将数字孪生等同于智能模型,而忽略了数据采集和可视化的基本组成部分,会误导创建者构建数字阴影或数字模型,而不是实际的数字孪生。本文揭示了数字孪生技术在航空航天领域以及其他领域的复杂性,以消除影响其在安全关键系统中有效实现的谬误。它包括对数字孪生及其组成元素的全面调查。阐述了它们特有的最先进的组成以及相应的局限性,提出了航空航天领域未来数字孪生的三个维度,称为航空数字孪生(aero-DT),作为本次调查的结果。这些包括数字孪生的交互、标准化和认知维度,如果认真利用这些维度,可以帮助航空 DT 研发界将现有和未来航空航天系统及其相关流程的效率提高四倍。
