➢通过Josephson和Quantum Hall效应定义H,kibble(瓦特)平衡:Nist(US),NRC(CA),Metas(SW),LNE(FR),Kriss(Kriss(Kr),MSL(NZ),MSL(NZ),BIPM等。➢joule余额:nim(CN)
种类 菌株 应用 参考 嗜热脂肪土芽孢杆菌 FMR12 洗衣机洗涤剂 (Abol-Fotouh 等人,2021) 苍白芽孢杆菌 - 废水处理 (Ktata 等人,2020) Kocuria flava ASU5 (MT919305) 生物柴油生产 (Najjar 等人,2021) 曼诺尔假单胞菌 LP2 油水解 (Komesli 等人,2021) 芽孢杆菌属VITL8 废物利用(Balaji 等人,2020 年)链霉菌属。 A3301 塑料的生物降解 (Panyachanakul 等人,2020 年) 空气芽孢杆菌 24 k 纺织品 (El-Fiky 等人,2022 年)
W3+ FAIR JENA 2024 年 9 月 25-26 日 — 工业应用的最新光学薄膜分析
苯酸酸的工业效用扩展到了几个部分,并具有利用其抗氧化剂,抗菌和紫外线保护特性的应用。在食物中,由于它们能够抑制脂质氧和微生物生长,因此将其用作天然防腐剂,从而扩展了食品的含量。例如,来自辣木oleifera的Caf- feoylquinic Acid用于保存山羊肉馅饼。在化妆品中酚酸中的抗衰老,抗衰老弹药和紫外线保护作用都将酚类酚酸分为乳霜,喷雾剂和护肤产品。com磅,例如原始技术酸和p-豆酸,以面对乳霜,以防止皮肤保护并减少炎症。酚酸也用于
摘要 陶瓷材料由于其独特的性能,如耐高温、耐腐蚀和机械强度,已被广泛应用于各种工业应用。尽管陶瓷材料具有众多优点,但其在工业应用中的广泛应用仍然存在挑战。生产成本高、原材料有限以及陶瓷材料加工和成型困难是一些关键问题。本系统综述旨在分析陶瓷材料的趋势及其在工业应用中的可行性。为了进行研究,对学术数据库、研究文章和行业报告进行了彻底搜索。搜索条件包括“陶瓷材料”、“工业应用”、“趋势”和“可行性”等关键词。选择了近期发表的相关研究进行分析。提取、合成和分析数据以确定陶瓷材料的趋势及其在不同行业中的潜在应用。研究结果表明,人们对开发具有增强强度、韧性和热稳定性等改进性能的先进陶瓷材料的兴趣日益浓厚。研究人员正在探索新的制造技术,例如增材制造和烧结工艺,以克服传统陶瓷加工方法带来的挑战。根据本系统评价的结果,建议开展更多研究,探索陶瓷材料在可再生能源、生物技术和国防等新兴行业中的潜在应用。行业利益相关者应投资研发,开发具有成本效益和可持续性的工业用陶瓷材料。研究人员、制造商和最终用户之间的合作对于推动创新和促进陶瓷材料在工业应用中的采用至关重要。
o 专家系统:能够模拟演绎逻辑推理 o 模糊逻辑:能够将不确定性管理引入逻辑推理 o 遗传算法:通过模仿自然选择,能够确定给定问题的最佳解决方案; o 人工神经网络:模拟我们大脑神经网络的系统能够从数据中学习并推断行为和信息; • ML:使计算机能够学习的特定 AI 技术; • DL:ML 技术的子集,专门基于深度(或多层)神经网络,适用于解决计算机视觉、图像识别和信号处理问题; • GEN_AI:DL 的子集,使用 NLP(自然语言处理)技术来阐述文本并从输入(提示)开始预测句子
原子层沉积 ( ALD ) 是一种从物质的气相中沉积各种薄膜材料的工艺。2021 年全球原子层沉积 ALD 设备市场规模估计为 12.9662 亿美元,预计到 2028 年将达到 67.4466 亿美元,预测期内复合年增长率为 26.56%。该技术的增长不仅基于微电子应用,还基于工业锂离子电池、光伏和量子技术领域。原子层沉积是一种薄膜技术,可为广泛的应用提供新的和高度创新的产品。
《先进材料表征技术》课程主要讲授光子(同步辐射X射线)、电子和中子的成像、衍射和光谱的物理原理和定量分析,以及它们在半导体、能源材料、化学工程、建筑、信息技术和航空航天等工业领域的应用。从空间分辨率、能量分辨率、时间分辨率、检测灵敏度和效率等方面,比较了同步辐射X射线源、散裂中子源和像差校正电子显微镜等先进仪器设备中的各种表征技术,以展示它们在获取晶体结构、原子位置、电子结构、自旋结构、元素分布、磁性、化学键和动力学演化等信息方面的优缺点。这些知识指导学生选择合适的表征技术来研究材料的目标结构并理解其在工业应用中的结构-性能关系。
简介 酶 酶是一种生物催化剂,本质上是蛋白质,有助于加快新陈代谢和化学反应的速度,存在于所有生物体中。在化学中,酶已成为首选工具,由于其能够以高特异性和效率进行反应,因此在工业过程中的使用越来越多(Nigam,2013;Kumar 和 Sharma,2016;Rekik 等人,2019)。在已鉴定的 3000 多种酶中,只有约 5% 被用于工业(Robinson,2015)。酶的工业应用大大减少了许多行业的能源需求,工业中应用酶产生的废物是可生物降解且无毒的废物,对环境友好。此外,酶的使用
随着气候变化的加剧,减少人为造成的排放的需求变得更加紧迫,过渡到基于生物的经济至关重要。本文探讨了植物油作为基于石油的产品的可持续替代品的各种工业应用,包括它们在食品,聚合物,润滑剂,表面活性剂,农药,润肤剂和生物燃料中的使用。本综述深入研究了生物合成途径,详细介绍了涉及三酰基甘油合成的关键酶和过程。它彻底讨论了遗传和代谢工程如何不仅可以增加油产量,还可以改变脂肪酸成分以更好地满足工业需求。通过了解遗传学并利用先进的生物技术,植物来源的石油含量和质量可以显着增强,与可持续性目标和工业需求保持一致。本文对植物石油生产的当前用途和基因工程进行了全面概述,提出了创新的策略,例如利用生物质或种植不可食用的油作物的油。这些方法旨在建立一种可持续的工业体系,减少对化石燃料的依赖,并促进基于环境负责的生物经济的增长。此外,该评论强调了未来的方向,研究了在各个部门采用植物油的经济影响和环境益处,并将其定位为实现生态友好的,基于生物的经济的关键。