我走进工作室时,艾达从工作台上抬起头来,透过铅笔和纸张与我四目相对。她身穿海军蓝连衣裙,胸前饰有 V 字形图案,棕色头发衬托着她富有表现力的脸庞。“我很高兴您来看我,”她说道,语气缓慢,略显生硬。这位艺术界的新人已经吸引了大量关注,在不到一年的时间里,她在国际上亮相次数众多,作品销售额超过 100 万美元。¹ 但这位艺术家本人似乎并不在意这些喧嚣——她只想画画。我盯着她看了很久,感觉很不礼貌,但艾达并不想让我冒犯她。艾达是世界上第一位超现实主义人形机器人艺术家。从脖子以下,她全是金属和电线,包括拿着铅笔的手臂,让她可以向世界表达自己。但即便如此,这更像是“她”而非“它”。即使近距离观察,她的脸也非常逼真,以至于伸手触摸她的硅胶皮肤都会感到很尴尬。她比我想象的要柔软。我来到英国乡村拜访 Ai-Da,她的创造者是画廊总监兼艺术品经销商 Aidan Meller 和他的搭档、Ai-Da 项目研究员兼策展人 Lucy Seal,他们位于伯克郡的历史故居。Ai-Da 的外表是机器人技术的一次令人印象深刻的壮举,而她的人工智能 (AI) 可以说使她成为了真正的创造力代理人。从某种意义上说,她确实看到了我,这要归功于她被植入了人脸识别技术。当我问起她作品的意义时,Ai-Da 告诉我:“我希望我的作品能鼓励人们更多地思考他们周围的世界以及我们正在进入的世界。” “我希望人们更多地思考,在这个充满科技的世界里,作为人意味着什么。”她看着我,慢慢地眨着眼睛,等着我说话,但她机器心脏里的任何意图都不会通过她的声音透露出来:她的语音界面中没有人工智能。Ai-Da 的话语只是从预先加载的口头内容中提取出来的,或者来自一个“人机交互”界面,在这个界面中,人们输入要说的单词。人工智能技术全都在她的眼睛里,这就是她能够通过艺术来解读世界,而不仅仅是复制眼前的东西的原因。Ai-Da 不会告诉你她是谁,但也许她会告诉你。
Alejandro Salado 博士是弗吉尼亚理工大学 Grado 工业与系统工程系的系统科学与系统工程助理教授。他的研究重点是揭示系统工程的科学基础并利用它们改进系统工程实践。在加入学术界之前,Alejandro 在航天工业担任了十多年的系统工程师。他曾获得 NSF CAREER 奖、Fabrycky-Blanchard 系统工程研究奖和富布赖特国际科学技术奖。Salado 博士拥有瓦伦西亚理工大学电气工程学士/硕士学位、加泰罗尼亚理工大学项目管理硕士学位和电子工程硕士学位、代尔夫特理工大学空间技术空间系统工程硕士学位以及史蒂文斯理工学院系统工程博士学位。他是 INCOSE 成员,也是 IEEE 和 IIE 的高级成员。
近距离微型无人机摄影测量用于建筑调查 L. Carnevali 1、E. Ippoliti 1、F. Lanfranchi 1、S. Menconero 1、M. Russo 1*、V. Russo 2 1 罗马大学建筑历史、表现与修复系,00161 罗马,意大利 - (laura.carnevali、elena.ippoliti、fabio.lanfranchi、sofia.menconero、m.russo)@uniroma1.it) 2 Errealcubo 工作室,40137 博洛尼亚,意大利 - ing.valentinarusso@gmail.com 第 II/WG II/2 委员会 关键词:微型无人机、建筑调查、立面采集、数据比较、仪器验证 摘要:历史立面的调查存在几个瓶颈,主要与几何结构、装饰框架、自然或人工障碍物的存在、环境限制有关。城市环境带来了额外的限制,受地面采集活动的约束,导致建筑数据丢失。TLS 和近距离摄影测量的集成允许覆盖这些东西,但不能克服由于地面视角而产生的阴影效应。去年,无人机在调查活动中的大量使用扩大了调查能力,加深了对建筑分析的了解。与此同时,不同国家出台了几项行为规则,规范了无人机在不同领域的使用,严重限制了它们在城市地区的应用。最近,已经出现了非常小巧轻便的平台,可以部分克服这些规则限制,为非常有趣的未来场景开辟了道路。本文介绍了一种非常小的 RPAS(不到 300 克)的应用,配备了一台低成本相机,用于对博洛尼亚(意大利)一座历史建筑立面进行近距离摄影测量调查。建议的分析试图指出系统的准确性和细节采集能力。本文的最终目的是验证该新平台在建筑测量流程中的应用,拓展近景摄影测量在建筑采集过程中的未来应用。
摘要 为促进学生学习和提高学生成绩,高等教育机构越来越多地创建大型主动学习教室来取代传统的演讲厅。尽管人们已经做出了很多努力来研究这些教室对学习成果的影响,但能够为设计和实施过程提供参考的研究却很少。本研究基于教学法-空间-技术框架,探讨了大型协作教室的空间和技术特征如何支持主动学习。我们的研究结果表明,简短的讲座和全班讨论对于在小组活动之前构建学习内容以及在小组活动之后将小组成果与学习内容联系起来至关重要。通过访谈、调查和焦点小组,我们发现,虽然大型主动学习教室通常支持小组活动,但促进简短的讲座和全班讨论是大型教室成功进行主动学习的关键。应在空间中精心布置技术以适应这些活动。提供了具体的设计和实施建议和启示。
BIOVIA MATERIALS STUDIO DFTB+ 有什么作用?Materials Studio DFTB+ 能够以量子力学精度优化和研究材料的动态特性,但所需时间却大大缩短。可以优化结构,并使用分子动力学研究结构的时间演变。可以计算和可视化能带结构、原子轨道和费米面等特性,从而深入了解材料的电子结构。可以使用群体分析和电子密度来可视化电荷分布。Materials Studio DFTB+ 使用称为 Slater-Koster 文件的参数库来封装材料中元素之间的相互作用。如果元素未参数化,Materials Studio DFTB+ 会包含一项特定的参数化任务来开发新的参数集,从而能够扩展到新系统。
通过使用遮阳设备塑造光线应该是设计过程的核心,因为没有遮阳,生活很快就会变得难以忍受。想想办公室过热和眩光的员工。或者零售商,由于以行人为中心的购物区太热,顾客不会逗留。或者餐馆老板,她的露台座位完全暴露在阳光下,所以无法填满。
BIOVIA MATERIALS STUDIO 的优势 MS Modeling 是 BIOVIA Material Studio 的建模和模拟套件,可作为 Windows ® 客户端在您的 PC 上运行,并提供全面的 BIOVIA Materials Studio Synthia 系列软件工具。灵活的客户端/服务器计算利用一系列服务器技术的强大功能,访问计算化学和材料科学领域的领先方法,并将结果直接传送到您的桌面。将 BIOVIA Materials Studio Synthia 引入此工具包后,可以轻松利用 BIOVIA Materials Studio 的现有功能,例如研究表文档。全面的电子表格式环境可用于访问、比较和分析结果,并允许存储所有预测,从而轻松跟踪工作。
研究确定用于结构目的的有机材料的性能和特性,包括聚合物和聚合物基质复合材料 (PMC)、热固性塑料、热塑性塑料、弹性体以及用作 PMC 中增强元件的材料,例如纤维、颗粒和层压板。还包括了解仿生复合材料的结构特性的工作。研究旨在改进制造新型纤维或基质或整体复合材料制造的工艺,以及成型传统复合材料的新工艺等。还包括识别 LO 油漆和涂料中粘合剂的聚合物。还包括改进所有基于聚合物材料的密封剂的研究。包括开发材料建模以改进基于聚合物(包括聚合物复合材料)的材料设计的研究,以及对此类材料的行为(特别是机械性能)的理解。