心理负荷 (MWL) 是人体工程学和人为因素中最广泛使用的概念之一,代表着日益重要的主题。由于许多工作环境中的现代技术对操作员的认知要求越来越高,而体力要求却越来越低,因此了解 MWL 如何影响绩效变得越来越重要。然而,MWL 也是最模糊的概念之一,具有众多定义和维度。此外,MWL 研究倾向于关注复杂、通常安全至关重要的系统(例如运输、过程控制)。在这里,我们概述了过去三十年来在复杂系统设计中对 MWL 的理解、测量和应用的现状。最后,我们讨论了应用研究面临的当代挑战,例如认知工作量和身体工作量之间的相互作用,以及工作量“红线”的量化,该红线指定操作员何时接近或超过其性能容忍度。
项目、设计和施工工具列表旨在提高您对 NAVFAC PACIFIC 机会的认识。如果您对列出的任何项目感兴趣,请访问 www.SAM.gov。位置可能不反映项目的实际物理位置。在发布项目概要后确认项目位置。对于设计代理,IH =
与此相关的是,鉴于该地区65%的公司和组织在PWC的第27个研究中,即2024年,该地区的公司和组织中的65%都在考虑其用法,即2024年(Narayanan&McLiver,2024年),该地区的使用情况变得猖ramp。他们所指的技术进步是采用生成人工智能(Genai)和其他自动化审计工具,这些工具被认为可以提高效率和合规性。尽管它减轻了审计师的负担,但仍在进行有关其对审计工作量和审计质量的实际影响的研究。在菲律宾背景下,审计委员会主席(COA)主席已经旨在以数字方式改变州审计,包括开发符合国际标准的技术驱动会计系统。电子审计,以通过对技术的支持进行审核,从而改善了审计技术和程序(Cordoba,2023年)。借助人工智能和自动化系统的开发,识别数据模式和检测欺诈变得更容易发现。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
解决方案,应用网络安全控件不再是一项琐碎的任务。策略控制工具集只会不断增长,网络中有多个执行点,以使用不同的方法(例如主机防火墙,网络防火墙和SDN控制器)或以安全组的形式保护我们的应用程序工作负载。
摘要。目的:脑电图 (EEG) 作为一种生理测量手段,在人因研究中越来越受欢迎,因为它客观、不易产生偏见,并且能够评估认知状态的动态。本研究调查了参与者在单显示器和双显示器配置下执行典型办公室任务时记忆工作量与 EEG 之间的关联。我们预计单显示器配置的记忆工作量会更高。方法:我们设计了一个实验,模拟受试者执行某些办公室工作的场景,并检查受试者在两种不同的办公室设置中是否经历了不同程度的记忆工作量:1)单显示器设置和 2)双显示器设置。我们使用 EEG 频带功率、相互信息和一致性作为特征来训练机器学习模型,以对高记忆工作量状态和低记忆工作量状态进行分类。主要结果:研究结果表明,这些特征表现出显着差异,并且在所有参与者中都是一致的。我们还在先前的研究中通过 Sternberg 任务收集的不同数据集验证了这些 EEG 特征的稳健性和一致性。意义:该研究发现 EEG 与个体的记忆工作量相关,证明了使用 EEG 分析在开展现实世界的神经人体工程学研究中的有效性。
为此,我们设计了四步管道Lars-GPT(图1)。首先,用户需要选择标准(通过过滤荟萃分析的某些合适标准),并为每个标准创建一个提示(单prompt;表1)。第二,用户需要使用一些记录来评估这些单个奖励,然后选择单个prompts的最佳组合。第三,用户需要选择一个最佳组合的及时策略,并根据所选的提示策略合并提示(组合启动;补充文件1)。最后,合并后的预订以及每个记录的标题和摘要将作为聊天完成。关于记录是否符合用户标准的决定将从返回的答案中提取。在这项研究中,我们使用OpenAI提供的API(应用程序编程界面)评估了GPT-3.5(GPT-3.5-Turbo-0301)和GPT-4(GPT-4-0314)。实际上,LARS-GPT可以使用Python分批进行。
摘要:外骨骼正在引起人们的注意,作为解决建筑行业背部受伤的潜在解决方案。但是,在施工中使用主动支持外骨骼会引发意想不到的后果,这可能会增加工人的心理工作量。长期增加心理工作可以影响工人的福祉和生产力。预测外骨骼使用期间的心理工作量可以为减轻触发因素提供依据。这项研究研究了两个机器学习框架,用于使用主动的背支持外骨骼进行施工工作来预测精神工作量。实验实验,其中脑电图(EEG)的数据是从戴着主动背支架外骨骼的参与者那里收集的,以执行地板任务。EEG数据接受了预处理,包括频带滤波,缺口过滤和独立的组件分析,以删除工件并确保数据质量。基于回归的长期记忆(LSTM)网络和卷积神经网络和LSTM的混合模型进行了培训,以预测处理后的脑电图数据的未来时间步骤。使用均方根误差和R平方评估网络的性能。平均均方根误差为0.162,R平方为0.939,表明LSTM网络在所有EEG通道上具有更好的预测能力。实际心理工作量和预测的心理工作量之间的比较结果还表明,实际心理工作负载中约有75%的差异是在预测的心理工作中捕获的。这项研究增强了对在建筑工作中使用外骨骼的意外后果的理解。结果强调了各种卷积神经网络方法在识别关键EEG数据特征的有效性,并为未来应用中的算法选择提供了指南。此外,该研究还确定了在使用外骨骼期间评估心理工作量的最合适的大脑通道,从而有助于EEG设备的开发,以优化成本效益,解释力和最少的通道。这项研究为利益相关者提供了宝贵的见解,以便在使用外骨骼并发现缓解机会的同时了解心理工作的影响。