识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
近年来的抽象背景,三维(3D)球体模型在科学研究中变得越来越流行,因为它们提供了一种与生理相关的微环境,可以模仿体内条件。与传统的二维细胞培养方法相比,它可以更好地了解3D球体测定法具有优势,因为它可以更好地了解细胞行为,药物功效和毒性。但是,使用3D球体测定法受到了用于球体图像分析的自动化和用户友好的工具的阻碍,这会对这些测定的可重复性和吞吐量产生不利影响。为解决这些问题的结果,我们开发了一种完全自动化的,基于Web的工具,称为Spheroscan,该工具使用了带有卷积神经网络(R-CNN)的名为“掩码区域”的深度学习框架进行图像检测和细分。为了开发一个可以从一系列实验条件中应用于球体图像的深度学习模型,我们使用使用Incucyte Live细胞分析系统和常规显微镜捕获的球体图像训练了该模型。使用验证和测试数据集对经过培训模型的性能评估显示出令人鼓舞的结果。结论Spheroscan允许轻松分析大量图像,并提供交互式可视化功能,以更深入地了解数据。我们的工具代表了球体图像分析的重大进步,并将促进科学研究中3D球体模型的广泛采用。可在https://github.com/funtionalurosology/spheroscan上获得有关Spheroscan的源代码和详细的Spheroscan教程。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
• 来自多个无线设备的数据:同时从一个或多个无线 CPS 设备收集数据 • 客户列表:创建和保存客户历史信息 • 工作清单:创建和保留工作提醒 • 工作追踪器:创建和保留已执行服务的记录 • 地理位置:记录和存储工作完成的位置 • 时间戳:记录和存储时间和日期 • 监测读数:远程 • 共享/发送数据:方便地通过电子邮件发送或保存数据 • 可选语言:从不同的语言中选择
(c) 在使用人工智能工具进行任何与工作相关的用途之前,无论其位置如何,只要该用途不在列表中,未获得其部门和工作分类的特别批准,或未获得人工智能用户希望使用人工智能工具执行的任务的批准,人工智能用户必须获得 [主管/经理/人力资源指定人员] 的明确书面同意。提出请求的人工智能用户应准备好讨论使用相关人工智能工具完成工作相关任务的目的、范围和业务理由。
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
efrag - 欧洲财务报告咨询小组 - 开发了欧洲可持续性报告标准(ESRS),该标准为公司报告环境,社会和治理(ESG)主题提供了一个框架。必须对所有受公司可持续性报告指令(CSRD)约束的公司报告12个标准
抽象动机:在生物信息学的计算机实验中,涉及计算工具和信息回购的协调使用。以Web服务的形式提供了越来越多的这些资源,并提供了程序化访问。生物信息学科学家将需要在工作流中协调这些网络服务,作为其分析的一部分。结果:Taverna项目开发了一种工具,用于为生命科学社区的生物信息学工作构成和制定。该工具包括一个工作台应用程序,该应用程序提供了用于工作流量组成的图形用户界面。这些工作流是用一种新语言编写的,称为简单的概念统一流量语言(SCU lof),其中在工作流程中的每个步骤都遵循一个原子任务。使用两个示例来说明在计算机实验中可以使用工作台应用程序将其表示为SCU浮动流量的便捷性。可用性:Taverna Work流量系统可作为开源可用,可以从http://taverna.sourceforge.net contact:taverna-users@lists.sourceforge.sourceforge.net
