roshe- @ @roche直接救济 - @directrelief Novo Nordisk- @ @@novonordisk美国心脏协会 - @Merican_Heart国际牛皮癣协会联合会 - @psoriasisifpa tanzania tanzania ncd ncd ncd ncd ncd ncd ncd ncd ncda ncda nc @@tancda Liverpool of Tropical Indial @ @ @ @ @ @ @ @lstmny @ @lstmne nheh ken hhia kik ken hhia kia kik kin hhia khi. – @NCDAllianceKe Global Health Advocacy Incubator – @IncubatorGHAI ACT Health Promotion – @actbr Healthy Latin America Coalition (CLAS) – @CLAS_Saludable United for Global Mental Health – @UnitedGMH Boehringer Ingelheim – @BoehringerSA Government of Scotland – @scotgov NCDI Poverty Network – @NCDIpoverty Access Accelerated – @NCDAccess AstraZeneca – @AstraZeneca AMREF Health Africa – @Amref_Worldwide Healthy Caribbean Coalition – @HealthCaribbean Vital Strategies – @VitalStrat World Heart Federation – @worldheartfed PATH – @PATHtweets WHO – @WHO UNDP – @UNDP World Diabetes Foundation – @WorldDiabetesF UNICEF – @unicef NCD儿童 - @ncdchild hriday - @hriday_org清洁空气基金 - @cleanairfund
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
● 如果谈到政治,试着将谈话从这些问题上转移开,回到基于事实的信息上。 ● 保持自己的语气和音量均匀。如果事情升级,不要模仿他们的语气或声音,因为这样会很快导致一场富有成效的对话结束。 ● 如果你问了开放式的问题,并且真的感到好奇/脆弱,不要把他们的愤怒当成针对你个人的。他们可能已经被问过好几次了,已经变得沮丧。 ● 如果你发现自己变得愤怒或防御,可能是时候结束谈话了。如果觉得合适,你可以在另一个时间回到这个话题。 ● 如果你觉得不安全,就结束谈话。没有必要继续和行为不当的人说话。帮助人们了解疫苗接种的事实很重要,但你的心理、情感和身体安全是第一位的。如果有人
动机:由于基因组图是代表人群中遗传多样性的强大数据结构,因此它们可以帮助识别传统线性参考遗漏的基因组变异,但它们的复杂性和大小使对基因组图的分析变得具有挑战性。我们试图开发一种基因组图分析工具,该工具通过解决现有工具的局限性来帮助这些分析更容易访问。具体来说,我们提高了可扩展性和用户友好性,并提供了许多新的统计信息以进行图形评估。结果:我们开发了一种有效,全面和集成的工具Gretl,以通过提供广泛的统计数据来分析基因组图并获得对其结构和组成的见解。gretl可以用于评估不同的图表,比较图形构造管道的输出与不同的参数,并对单个图进行深入分析,包括特定于样本的分析。借助Gretl,可以确定遗传变异和潜在目标区域的新型模式,以便以后进行更详细的检查。我们证明,Gretl在速度方面优于其他工具,尤其是对于较大的基因组图。可用性和实现:Gretl在Rust中实现。评论的源代码可在MIT许可证上获得https://github.com/moinsebi/gretl。文档中提供了如何运行gretl的示例。几个Jupyter笔记本电脑是存储库的一部分,可以帮助可视化Gretl结果。
摘要:炎症性肠病(IBD)的特征是慢性肠炎,没有治愈和有限的治疗选择,通常具有全身性副作用。在这项研究中,我们开发了一种特定于目标的系统,可以通过设计益生菌大肠杆菌Nissle 1917(ECN)来潜在地处理IBD。我们的模块化系统包括三个组成部分:基于转录因子的传感器(NORR),能够检测炎症生物标志物一氧化氮(NO),1型血素蛋白分泌系统以及由人类抗TNFα纳米型的库组成的治疗货物。尽管敏感性降低,但我们的系统表现出对NO的浓度依赖性反应,成功地分泌了与常用药物adalimumab相当的结合亲和力的功能性纳米型,如酶联免疫吸收测定和体外分析所证实。这个新验证的纳米库库扩展了ECN治疗功能。也可以在ECN中首次表征所采用的分泌系统,可以进一步改编为筛选和净化感兴趣的蛋白质的平台。此外,我们提供了一个数学框架来评估工程益生菌系统中的关键参数,包括相关分子的产生和扩散,细菌定植率和粒子相互作用。这种综合方法扩展了用于基于ECN的疗法的合成生物学工具箱,提供了新颖的零件,电路和炎症热点可调反应的模型。关键字:工程益生菌,IBD,渗透性,E。Coli Nissle 1917(ECN),一氧化氮,TNFα,纳米型■简介
微生物膜标记包。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3丰度。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3骨架_taxa。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4分配 - otu_table。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 compare_da。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6混杂器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7个数据库。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8个数据cid_ying。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8个数据ECAM。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8个数据ECAM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个数据输入_arumugam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个data-kostic_crc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10个数据氧。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10个数据pediatric_ibd。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11个数据 - 跨性别_colitis。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 extract_posthoc_res。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 get_treedata_phyloseq。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 import_dada2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 import_picrust2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 import_qiime2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Marker_table。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Marker_table类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 Marker_table < - 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17微生物膜标记物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18微生物级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 nmarker。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20归一化,门索方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 Thyloseq2Seq2。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Teyloseq2Dger。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。24 Thyloseq2metagenomeseq。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 plot.compareda。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 plot_abundance。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 plot_cladogram。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 plot_f_bar。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>28 plot_heatmap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。29 plot_posthoctest。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 polot_sl_roc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31后测。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32后级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33个重新示例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 run_aldex。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 run_ancom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 run_ancombc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 run_deseq2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 run_edger。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44
在其长达一个世纪的历史中,组织学一直是三维(3D)组织的2维研究。t主要是由于特定的限制,特定的y二维(2D)视野,结合大多数组织过于不透明,无法以较大的量表和高分辨率进行高度分辨率。even尽管在一个多世纪前发明了通过R EFR激活指数构图的组织清除[1],但缺乏想象和分析能力限制了我们获取高效率IMA GES的能力,并量化了获得的高度ima ges和量化数据获得的数据。在过去的十年中,灯页微观镜的双创新和Br ain清除tec hniques hniques hniques e启用了3D成像的3D成像,具有亚细胞分辨率[2]。ho w e v er,3d ima ging数据量大复合物,m ulti-gigabyte ima ge stac ks,无法轻易进行操作。这是针对特定分析任务优化的专业IMA ge Analy ysis管道的范围,例如识别感兴趣的功能,将其映射到参考模板上,并将结果签到3D [3-6]。不幸的是,这些软件包倾向于依赖于支持软件的复杂而脆弱的环境(例如,特定版本中的Python软件包)。作为一种疾病,这些软件管道的人很脆弱,需要fre-
但是,对于启发,规范,验证和验证,有最小的工具支持。这是一项具有挑战性的任务,因为需要参与此过程的专家(伦理学家,律师,监管机构,最终用户等)的非技术和各种背景。我们的软件Sleec-TK是一种用户友好的工具包,采用正式方法,允许利益相关者在验证和验证Sleec要求的验证和验证中了解和解决问题。Sleec-TK是一种公开可用的工具包,可由非技术专家使用,可在[1-3]中支持该过程和技术。由Sleec-TK机械化的Sleec框架包括规则启发过程[1]以及规范,验证和验证技术[2]。[3]中的技术报告介绍了我们的理论基础和过程,以实现Sleec要求的规范,一致性验证和验证。它讨论了Sleec-TK软件中使用的领域特定语言(DSL)和该语言的正式语义,并采用了定时版本的CSP(交流顺序过程)[4]。[2]中描述了我们工具的初始版本,该版本仅支持Sleec语言建模,一致性和冗余验证。我们在这里描述的版本实现了语义的更新版本,该版本提供了增加的可伸缩性,并已得到了广泛的验证。此外,它通过对SLUEC规则的系统模型的一致性验证得到了增强(即,图中所示的Sleec一致性插件1是我们软件中的新组件)。此外,对于Sleec-TK,我们用7个Sleec规范文件验证了规则和语言,与利益相关者一起涵盖了199个规则。从规范思想的角度[5,6]的角度,在开发自主系统方面有重要的工作,包括基于用户的道德选择的透明度[7],解释性和数据驱动的个性化工具[8]。我们Sleec语言的工作还考虑了启发和调试的替代方法[9]。sleec-tk与规范的操作[1] [10]有关,支持自动化过程,以验证和验证捕获这些规范的规则,通过其在𝑡𝑜𝑐𝑘-CSP中描述的语义机械化(定时过程代数[4,11])。sleec-tk被用作Eclipse环境的一组插件,但包括用于Sleec规则验证的独立版本。存储库中的readme.md文件提供了用于下载,安装和使用软件的说明,并提供示例。规则的定义是通过图形界面提供有关任何句法或打字问题的指导的图形界面。在后台,生成𝑡𝑜𝑐𝑘-CSP脚本以支持冲突和冗余的检查。通过在后台使用CSP型号Checker FDR4 [12],以按下按钮进行。验证是通过与Robotool 1 [13]集成而进行的,这是一种使用域特异性符号Robochart建模和验证移动和自治机器人的工具。SLEEC规则可以作为Robochart模型的文档定义属性的一部分,用于自动验证和报告。