摘要:疫苗素养 (VL) 是指查找、理解和评估与疫苗接种相关的信息,以便就免疫接种做出适当决定的能力。迄今为止为其评估而开发的工具已经产生了一致的结果。然而,由于影响 VL 的因素很复杂,某些维度可能被低估。此外,使用这些工具的研究中使用的方法的异质性进一步阻碍了对其作用的全面理解。为了克服这些限制,人们一直在寻求一种提出新工具的方法。这就需要更新早期关于 VL 和相关工具的文献综述,探索其与疫苗犹豫 (VH) 的关系,并检查相关变量,如对免疫接种的信念、态度和行为。基于当前文献,并在对早期研究数据集的重新分析的支持下,我们提出了一个理论框架,作为创建未来评估工具的基础。这些工具不仅应评估 VL 动机方面的心理因素,还应涵盖知识和能力。VL 在框架中的定位是社会人口前因和态度的交汇点,从而导致行为和结果,解释了 VL 为何以及如何通过对抗 VH 并在个人、组织和社区层面运作来直接或间接地影响疫苗接种决策。
2 AI工具评论5 2.1写作和(文本)内容创建助手。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.1 Longshot AI。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 7 2.1.2 hupotenuse ai。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 2.1.1 Longshot AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.1.2 hupotenuse ai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.1.3 jasper。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 2.1.4 Copy.ai. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 2.1.5写作。 。 。 。 。 。 。 。 。9 2.1.4 Copy.ai.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.5写作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.1.6简化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.1.7语法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.1.8概念AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.1.9深色。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.10粘性AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.2会议。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.2.1 TL; DV。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.2.2超级鼻。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.2.3元音。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>20 2.2.4等待室。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 2.2.5水獭AI。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 2. 2.6 NVIDIA广播。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.7鹦鹉AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 2.2.8 Firefliesai。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。24 2.2.8 Firefliesai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.2.9 Avoma。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26 2.2.10 Meetgeek。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 2.2.11 fathom。 。 。 。 。 。 。 。 。 。 。25 2.2.9 Avoma。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.2.10 Meetgeek。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 2.2.11 fathom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.2.12 sembly。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 2.3演示文稿。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.3.1 Decktopus ai。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 2.3.2美化AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.3.3演示文稿AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.3.4 TOME AI。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 34 2.3.5 sendsteps。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。33 2.3.4 TOME AI。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 2.3.5 sendsteps。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.4语音生成。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 2.4.1 lovoai。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 2.4.2 Murfai。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>38 2.4.3 Elevenlabs。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>39 2.4.4 Play.ht。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 2.4.5语音。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 2.4.6 ListNrr。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>42 2.5视频生成。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>43 div>
大型语言模型(LLMS)已经证明了需要解决任务计划和使用外部工具(例如天气和计算器API)组合的任务的熟练程度。但是,现实世界中的复杂系统提出了有关任务计划和工具使用情况的三个普遍的挑战:(1)实际系统通常具有许多API,因此将所有API的描述以LLMS的提示馈送是不切实际的,因为代币长度有限; (2)实际系统是为处理复杂任务而设计的,基本LLM几乎无法为此类任务计划正确的子任务订单和API呼叫顺序; (3)实际系统中API之间的类似语义和功能在区分它们时都为LLM甚至人类都带来了挑战。回应,本文介绍了一个旨在增强现实世界中LLM代理的任务计划和工具使用(TPTU)功能的综合框架。我们的框架包括三个旨在应对这些挑战的关键组件:(1)API猎犬在广泛的API集合中选择最相关的API; (2)LLM FineTuner对基本LLM进行调整,以增强其在任务计划和API调用方面的能力; (3)演示选择器检索与难以区分的API相关的演示,该演示进一步用于秘密学习以提高最终性能。我们使用现实世界中的行业系统和开源的学术数据集验证我们的方法,证明了每个组件以及集成框架的功效。
政策量化分析可以有效地评估政府对COVID-19紧急管理效果的反应,并为政府提供了制定后续政策的参考。内容挖掘方法用于探讨中国中央政府以多维方式爆发自爆发以来,中央政府发出的301 Covid-19政策,并全面分析了流行病预性政策的特征。然后,基于策略评估理论和数据融合理论,建立了基于PMC-AE的COVID-19政策评估模型,以定量评估八个代表性的COVID-COVID-19策略文本。结果表明:首先,中国的19个政治旨在为受流行病的企业和个人提供经济支持,由49个部门发行,包括32.7%的供应水平和28.5%的需求级别,以及25.8%的环境级别。此外,战略级别的政治至少占13%。其次,根据开放性,权威,相关性和规范原则的原则,通过PMC-AE模型评估了八项Covid-19政策。四个政策是I级政策,三个政策是II级政策,一项政策是III级政策。其低分子的原因主要受四个指数的影响:政策评估,激励措施,政策重点和政策受体。总而言之,中国采取了非结构性和结构措施来预防和控制流行病。引入特定流行病预防和控制政策已经在整个流行病预防和控制过程中实现了复杂的干预。
密码学可以确保我们的在线互动,交易和信任。为了实现这一目标,理论上还需要确保加密原始图和协议,而且还需要由加密图书馆开发人员在实践中安全地实施。然而,即使对于熟练的专业人员来说,可以安全地实施加密算法也很具有挑战性,这可能会导致脆弱的实施,尤其是侧向通道。为了定时攻击,这是一类严重的侧向通道,存在多种工具,这些工具应帮助加密图书馆开发人员评估其代码是否容易受到时机攻击的影响。先前的工作已经确定,尽管有兴趣编写恒定时间代码,但Cryp-tographic Library开发人员由于总体上缺乏可用性而不会通常使用这些工具。然而,影响这些工具可用性的确切因素仍然不可能。尽管许多工具是在学术背景下开发的,但我们认为值得探索有助于或阻碍其有效使用的因素,而加密图书馆开发人员有效使用[61]。为了评估验证恒定访问性(CT)工具的可用性的原因和损害,我们对24个(后)研究生参与者进行了两部分可用性研究,这些工具跨越了6种工具,这些工具跨越了近似现实世界中用用案例的工具。我们发现,所有研究工具都受到不同程度的类似的US能力问题的影响,没有工具在可用性方面出色,并且可用性问题阻止了它们有效使用。根据我们的结果,我们建议有效验证CT的有效工具需要可用的文档,简单的安装,易于调整的示例,清晰的输出与CT viomelations相对应,以及最小的无创型标记。,我们通过文档,示例和安装脚本1以有限的学术资源来贡献第一步。
本演示文稿包含经修订的1933年《美国证券法》第27A条的含义和1934年《美国证券交易法》第21E条的含义。这些陈述受风险和不确定性的约束,可能会导致RELX PLC的实际结果或结果(以及其子公司“ Relx”,“ We”或“我们”)与在任何前瞻性陈述中表达的陈述有重大不同。我们将任何不是历史事实的陈述视为“前瞻性陈述”。术语“ Outlook”,“估算”,“预测”,“项目”,“计划”,“打算”,“期望”,“应该”,“应该”,“可以”,“意志”,“相信”,“趋势”,“趋势”和类似的表达方式可能表明前瞻性陈述。您不应对这些前瞻性陈述不依赖,这些陈述仅在本演讲之日起说。除法律要求外,我们没有承担公开更新或发布对这些前瞻性陈述的任何修订的义务,以反映本演讲之日之后的事件或情况,或反映出意外事件的发生。可能导致实际结果或结果与前瞻性陈述中包含的估计或预测有实质性差异的重要因素包括:有关收集或使用个人数据的监管和其他更改;法律和法律解释的变化影响我们的知识产权和互联网交流;当前和未来的地缘政治,经济和市场状况;研究完整性问题或我们科学,技术和医学研究产品的付款模型的变化;我们对产品和服务的运营和需求的行业中的竞争因素;我们无法实现未来预期收购的好处;我们的网络安全系统或其他未经授权访问数据库的妥协;经济周期,贸易关系,传染病流行或流行病,恶劣天气事件,自然灾害和恐怖主义的变化;我们已经外包商业活动的第三方失败;我们系统的重大故障或中断;我们无法保留高质量的员工和管理;税法的变化和应用不确定性;汇率波动;市场状况不利或降级为我们债务的信用评级;定义福利养老金计划资产的市场价值变化以及用于重视计划负债的市场相关假设;违反公认的道德业务标准或适用法律;以及在RELX PLC向美国证券交易委员会提交的文件中不时提及的其他风险。
研究诚信 我们的使命是通过研究和分析帮助改善政策和决策,这一使命通过我们的核心价值观(质量和客观性)以及我们对最高诚信和道德行为的坚定承诺得以实现。为确保我们的研究和分析严谨、客观和不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策避免出现财务和其他利益冲突;并通过我们致力于公开发表研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/principles。
7.避免抄袭。我理解,使用生成式 AI 工具进行学术工作或创意项目并不能成为抄袭的理由。我将始终在使用 AI 工具时保持透明,并给予原创者和信息来源适当的荣誉,确保我的工作诚实、尊重并遵循道德准则。
2018 年 12 月,欧洲司法效率委员会 (CEPEJ) 通过了《关于在司法系统及其环境中使用人工智能的道德宪章》。CEPEJ 宪章代表了 CEPEJ 努力促进欧洲司法系统负责任地使用人工智能 (AI) 的第一步,符合欧洲委员会的价值观。考虑到支持宪章实施的必要性,CEPEJ 司法质量工作组 (CEPEJ-GT-QUAL) 探讨了根据宪章原则引入认证 AI 解决方案的机制的可能性。这项可行性研究是在 CEPEJ-GT-QUAL 的监督下由科学专家、巴黎上诉法院律师和巴黎第八大学讲师/研究员 Matthieu Quiniou 先生(法国)起草的。
• 通过允许我的学生在教育环境中使用开放式 AI,我同意承担任何风险、免除 LEA 的责任并放弃因学生使用此类 AI 工具而可能产生的任何责任,包括但不限于传统教育环境中的学生数据隐私权,例如《家庭教育权利和隐私法案》(FERPA)和加州教育法典第 49073.1 和 49073.6 节。