第一单元 金属结构:固体中的键 – 金属键 – 金属结晶、缺陷、晶粒和晶界、晶界对金属/合金性质的影响 – 晶粒大小的确定。合金的组成:合金化的必要性、固溶体的类型、休谟-罗瑟里规则、中间合金相和电子化合物。第二单元 平衡图 平衡图的构建实验方法、同质合金系统、合金的平衡冷却和加热、杠杆规则、共晶系统、一致熔化中间相、包晶反应。固态转变、同素异形体、共析体、包析反应、相规则、平衡图与合金性质之间的关系。Fe-Fe3C 二元相图的研究。第三单元 铸铁和钢:白口铸铁、可锻铸铁、灰口铸铁、球墨铸铁、合金铸铁的结构和性能。钢的分类、普通碳钢、低合金钢、高锰钢、工具钢和模具钢的结构和性能。有色金属和合金:铜及其合金、铝及其合金、钛及其合金的结构和性能。第四单元合金的热处理:合金元素对铁的影响-铁碳系统、退火、正火、硬化、TTT 图、回火、硬化能力、表面硬化方法、时效硬化陶瓷材料:结晶陶瓷、玻璃、金属陶瓷。
摘要:采用激光定向能量沉积 (L-DED) 技术制备了接近全密度且无裂纹的 AISI H13 热作工具钢。研究了两种不同的热处理方案,即从成品 (AB) 状态直接回火 (ABT) 和回火前系统化和淬火 (QT),并报告了它们对 L-DED H13 的微观结构、硬度、断裂韧性 (K app ) 和回火抗力的影响。为此,确定了最佳奥氏体化制度,并制作了回火曲线。在相似的硬度水平 (500 HV1) 下,QT 部件的 K app (89 MPa √ m) 高于 ABT (70 MPa √ m)。然而,这两个部件获得的断裂韧性值与锻造 H13 相当。考虑到高温奥氏体化过程中发生的微观结构均质化和再结晶,讨论了 QT 对应部件中稍大的 K app。 ABT 材料在 600 ◦ C 下的回火抗力与 QT 材料相比略有改善,但对于更长的保温时间(长达 40 小时)和更高的温度(650 ◦ C),ABT 表现出优异的耐热软化性能,这是由于其马氏体亚结构(即块尺寸)更细小、二次碳化物尺寸更细小以及二次 V(C,N)碳化物的体积分数更大。
抽象的可持续性现在几乎每个人都意识到并在全球讨论,从大公司到私人。在塑料成型行业中,生物复合材料为许多制造商提供了可持续发展的道路。生物复合材料是基于生物的纤维,例如纤维素或亚麻,并用作绿色的替代填充物材料,取代了常用的玻璃纤维或碳酸钙。但是,生物复合材料在我们的应用中也对工具钢提出了要求,将磨损和腐蚀的结合结合在一起,是最棘手的谜语。Tyrax ESR是为最苛刻的注射成型应用而开发的优质不锈钢。它以其耐腐蚀性,高润发性和良好的延展性而闻名,结合了56-58 hrc的工作硬度。强烈建议将生物复合材料用于塑料注射成型。生物复合材料的可持续性已成为全球广泛认可和讨论的概念,涵盖了从大公司到个人消费者的利益相关者。在塑料成型行业的背景下,生物复合材料为众多制造商提供了可行的可持续替代品。生物复合材料由基于生物的纤维(例如纤维素或亚麻)组成,并作为传统填充材料(例如玻璃纤维或碳酸钙)的环保替代品。与聚合物结合使用时,这种填充物的环境影响比传统塑料较低。生物复合材料的趋势在全球范围内迅速增长,尤其是在亚洲和欧洲,这主要是由于政府和国家建立的消费者需求和可持续性目标。
摘要:金属增材制造工艺自诞生以来就得到了长足的发展,现代系统能够制造结构应用的部件。然而,要通过这些方法成功加工,需要进行大量实验,才能找到优化参数。在基于激光的工艺中,例如直接能量沉积,通常会沉积单道珠并进行分析,从而获得有关输入参数如何影响输出对基材的粘附等特性的信息。这些特性通常使用专门的软件从切割线珠的横截面获得的图像中确定。所提出的方法基于 Python 算法,使用 scikit-image 库和在 H13 工具钢上生产的 18Ni300 马氏体时效钢的光学显微镜成像,并计算 DED 生产的线珠的相关特性,例如轨道高度、宽度、渗透性、润湿性角度、基材上方和下方的横截面积和稀释比例。 18Ni300 马氏体时效钢沉积物的优化条件为:激光功率为 1550 W,进给速率为 12 g min −1,扫描速度为 12 mm s −1,保护气体流速为 25 L min −1,载气体流速为 4 L min −1,激光光斑直径为 2.1 mm。对于横截面焊道,计算其各自的高度、宽度和穿透力的误差分别为 2.71%、4.01% 和 9.35%;稀释比例计算的误差为 14.15%,基材上方面积的误差为 5.27%,基材下方面积的误差为 17.93%。处理一幅图像的平均计算时间为 12.7 秒。开发的方法是纯分段的,可以从机器学习实施中受益。
摘要目前,研究人员面临的主要挑战是提高难以机理(DTM)材料的可加工性。切割工具处理的技术是要克服挑战的方法之一。低温和微波处理是提高切割工具性能的两种有前途的技术,以提高其增强可加工性的有效性。本文介绍了对使用经过处理的切割工具的难以增强难以增强机器材料(例如钛合金,基于镍的合金,铁质合金和复合材料的材料)的可加工性的尝试的审查。这项工作的目的是激励研究人员和学者在该领域进行进一步的研究,发展和创新。关键字加工,低温,微波炉,工具磨损,可加工1.简介钢的较高等级,例如工具钢,不锈钢和硬化钢等。;其他有色金属,即钛,钨和基于镍的合金等;一些复合材料被认为是难以机理(DTM)材料。这些材料在太空,核武器,汽车,船舶建筑和发电等中都有广泛的应用。(Kishawy等人2019)。在使用常规平面工具插入时切割时,它们的可加工性差(Outeiro等人2008)。 高硬度,产量和拉伸强度和低导热率主要导致频繁的工具磨损,高切割力和工作表面质量不佳(Karaguzel等人。2008)。高硬度,产量和拉伸强度和低导热率主要导致频繁的工具磨损,高切割力和工作表面质量不佳(Karaguzel等人。2015)。工具磨损,切割力,表面粗糙度,材料去除速率等是一些主要的可加工指标。工具磨损是加工过程中不可避免的现象,该工具的尖端逐渐磨损,在某个阶段,它停止切割。主要工具磨损类型是:侧面磨损,火山口磨损,鼻子磨损和辅助磨损,如图1.
Markus Mirz 1 m.mirz@iwm.rwth-aachen.de ; Marie Franke-Jurisch 2 marie.franke-jurisch@ifam- dd.fraunhofer.de ; Simone Herzog 1 s.herzog@iwm.rwth-aachen.de ; Anke Kaletsch 1 a.kaletsch@iwm.rwth-aachen.de ; Christoph Broeckmann 1 c.broeckmann@iwm.rwth-aachen.de 1 德国亚琛工业大学机械工程材料应用研究所 2 德国德累斯顿弗劳恩霍夫制造技术与先进材料研究所 摘要 粉末冶金法 (PM) 热等静压 (HIP) 中抽真空管的主要用途在于对胶囊进行抽真空和排气。传统的 HIP 胶囊由具有良好可焊性的金属板制成,因此易于连接抽吸管。随着增材制造 (AM) 等新兴技术的出现,现在可以设计更复杂的 HIP 胶囊。此外,还可以使用耐磨、富含碳化物的钢。然而,众所周知,这些材料难以焊接。本研究比较了两种不同的方法,将 AISI 304L 抽吸管粘合到由电子束熔化 (EBM) 以高碳工具钢 AISI A11 制成的 HIP 胶囊上。胶囊通过 TIG 焊接和钎焊连接,使用传统填充材料和基于热力学计算的定制填充材料。随后通过 HIP 进行固结,微观结构分析和氩气测量揭示了这三种方法对于气密接头的可行性和局限性。简介热等静压 (HIP) 是一种将金属粉末固结成固体材料的成熟工艺。它是在航空航天、汽车、石油和天然气等要求严格的行业中生产近净成形零件最可靠的成形工艺之一 [1]。使用一个或多个填充管将粉末填充到薄壁胶囊中。为了达到理想的高填充密度,填充过程通常在恒定振动下进行 [2]。之后,胶囊内的散装粉末通过真空泵通过抽气管排气,并在真空下保持数小时。在仍处于真空状态时,可通过锻造和焊接抽气管来封闭胶囊。在高温高压下,在 HIP 容器内对封装和脱气的粉末压块进行致密化 [3,4],这是最后一步,之后通过锯切、车削或铣削取出胶囊以获得成品部件。整个 HIP 工艺链如下图所示。
查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。
可控液体离子氮碳共渗工艺(TENIFER ® 和 ARCOR ® )可替代电镀涂层 Dr. Joachim Boßlet Durferrit GmbH,德国曼海姆 Danilo Assad Ludewigs Durferrit do Brasil,巴西迪亚德马 众所周知,由于其工艺特性,如高质量水平的最佳再现性,离子液体中的氮碳共渗可为处理后的部件提供出色的耐磨性、点蚀、咬合、卡死和表面疲劳抗性。但是,防腐效果仍然中等。可以通过在氧化盐熔体中进行后热处理来解决此问题,在氮化层表面产生非常薄但致密的氧化层。结合抛光和浸渍,氧化部件可以具有光滑、美观的黑色表面,从而显著提高盐雾试验中长达 1000 小时的耐腐蚀性,而不会失去上述优点。本文讨论了应用受控液体离子氮碳共渗 (CLIN) 工艺(如 TENIFER ® 和 ARCOR ®)来取代镀铬、镀镍和镀锌等电镀层,因为它们具有出色的耐腐蚀性和耐磨性,并强调了使用它们的经济和环境优势。由于易于操作,不需要复杂的工厂设备。工艺时间相当短,允许灵活工作,而无需为工作负载建立更大的缓冲容量。1.简介 CLIN 是用于钢和铸铁氮碳共渗和氧化的现代环保工艺的家族名称。氮和碳的扩散会产生所谓的化合物层,该层具有非金属特性。与其他涂层相比,该边缘区域的突出优势在于,牢固的化合物扩散在基材上,而不是涂在表面上。因此,它们表现出非常好的附着力,裂纹敏感性明显降低。根据所用材料,这些层的硬度为 800 至 1500 维氏硬度。化合物层由下面的扩散层支撑。CLIN 处理的部件可提供卓越的防磨损、防卡死、防擦伤、防点蚀和防疲劳保护。2.工艺特点 基本上所有类型的铁材料都可以在盐熔体中进行氮碳共渗,无需任何特殊的初步预处理,例如工具钢、低碳钢、阀门钢、奥氏体钢、铸铁或烧结材料。工艺顺序并不复杂。处理温度通常为 570 - 590 °C。经过短暂的预清洁和在空气中预热至 350 - 400 °C 后,将部件在盐熔体中进行氮碳共渗,通常持续 60 - 120 分钟。在特殊情况下,可以使用较低 (480 °C) 或较高 (630 °C) 的温度。对于淬火,使用水、空气、氮气、真空或氧化冷却浴。随后,用热水级联清洁炉料。对于氮碳共渗熔体,仅需控制以下几个参数: • 熔体的化学成分 • 处理温度 • 处理时间 与其他处理介质相比,盐熔体具有极高的氮含量。浸入液体盐浴后,氮碳共渗过程立即开始。几分钟后,已经形成了一个紧凑的