2 23EC602 VLSI设计4/0/0 4 4 40/40 PCC 3 23EC0XX新兴periveive-i 3/0/0 3 3 30/40 EEC 4 23EC9XX专业选举 - III 3/0/0 3/0/0 3 3 60/40 3 60/40 PEC 5 23EC9XX PROFESSTRIVE-ELACTIVE-ELACTIOVE-ELICALIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACTIVE-ELACITIVE-ELACITIVE-ELATIVE-ELATIVE-ELATIVE-ELATIOV 3/0/0 3 3 30/40 OEC 7 23EC603 VLSI设计实验室0/0/3 3 1.5 40/60 PCC 8 23EC604 MINI PROJECT II 0/0/4 2 2 40/60 PROJ PROJ TOR 19/0/1总计19/0/7 24 22.5 800
1。MA101BS矩阵和微积分3 1 0 4 2。CH103BS工程化学3 1 0 4 3。 CS103ES编程解决问题3 0 0 3 4。 EE101ES基本电气工程2 0 0 2 5。 ME101ES计算机辅助工程图形1 0 4 3 6。 CS106ES计算机科学与工程元素0 0 2 1 7。 CH106BS工程化学实验室0 0 2 1 8。 CS107ES编程解决问题实验室0 0 2 1 9。 EE102ES基本电气工程实验室0 0 2 1感应计划CH103BS工程化学3 1 0 4 3。CS103ES编程解决问题3 0 0 3 4。EE101ES基本电气工程2 0 0 2 5。ME101ES计算机辅助工程图形1 0 4 3 6。CS106ES计算机科学与工程元素0 0 2 1 7。CH106BS工程化学实验室0 0 2 1 8。 CS107ES编程解决问题实验室0 0 2 1 9。 EE102ES基本电气工程实验室0 0 2 1感应计划CH106BS工程化学实验室0 0 2 1 8。CS107ES编程解决问题实验室0 0 2 1 9。EE102ES基本电气工程实验室0 0 2 1感应计划
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
Character Type – Alphabet AD Artificial Intelligence & Data Science ME Mechanical AM CSE (Artificial Intelligence & Machine Learning) SC CSE (Cyber Security) AU Automobile PH Physics CE Civil CH Chemistry CS Computer Science EN English EA Advanced Communication Technology MA Mathematics EC Electronics and Communication ES Employability Skills EE Electrical and Electronics VA Value Added Course EV VLSI Design & Technology SA Studio Activities IT Information Technology
摘要:神经科学的主要目标是了解神经系统或神经回路组合如何产生和控制行为。如果我们能够可靠地模拟整个神经系统,从而复制大脑对任何刺激和不同环境的反应动态,那么测试和改进我们的神经控制理论将变得非常容易。更根本的是,重建或建模一个系统是理解它的一个重要里程碑,因此,模拟整个神经系统本身就是系统神经科学的目标之一,实际上是梦想。要做到这一点,我们需要确定每个神经元的输出如何依赖于某个神经系统中的输入。这种解构——从输入输出对理解功能——属于逆向工程的范畴。目前对大脑进行逆向工程的努力主要集中在哺乳动物的神经系统上,但这些大脑极其复杂,只能记录微小的子系统。我们在此认为,现在是系统神经科学开始齐心协力对较小系统进行逆向工程的时候了,而秀丽隐杆线虫是理想的候选系统。特别是,已建立并不断发展的光生理学技术工具包可以非侵入性地捕获和控制每个神经元的活动,并扩展到大量动物群体的数十万次实验。由于个体神经元的身份在形式和功能上基本保持不变,因此可以合并不同群体和行为的数据。然后,基于现代机器学习的模型训练应该能够模拟秀丽隐杆线虫令人印象深刻的大脑状态和行为范围。对整个神经系统进行逆向工程的能力将有利于系统神经科学以及人工智能系统的设计,从而为研究越来越大的神经系统提供根本性的见解和新方法。
在当今迅速发展的技术景观中,人工智能(AI)和机器学习(ML)已成为各个领域工程师的必不可少的工具。本课程对专门针对工程应用的AI和ML技术进行了全面探索。参与者将深入研究基本原则,实际方法论和现实世界中的案例研究,使他们在工程项目中有效利用AI和ML所需的知识和技能。本课程采用理论讲座和实践演示的融合。由于本课程的跨学科性质,整个学科的参与者将能够参加,欣赏和增强他们的知识,以保持新兴的AI和ML技术。STC打算专注于以下域,但不限于:
韦勒尔理工学院愿景声明 通过卓越的教育和研究改变生活。 韦勒尔理工学院使命声明 世界一流的教育:以道德和批判性思维为基础的卓越教育,改善生活。 尖端研究:扩展知识和解决关键问题的创新生态系统。 有影响力的人:快乐、负责、有爱心和高效的员工和学生。 有益的共同创造:积极与国内外行业和大学合作,提高生产力和经济发展。 服务社会:通过知识和同情心服务地区和世界。 电子工程学院愿景声明 通过传授电子工程方面的深厚知识,培养具有最高能力的工程师、技术专家和研究人员,成为领导者,他们将参与可持续发展,满足全球工业和社会的需求。 电子工程学院使命声明
摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
学术体系,提供各学科的主修和辅修课程。该创新体系将课程分为广度和深度,通过广泛的基础课程和高级选修课促进跨学科学习。学生有机会通过攻读不同专业的主修和辅修课程获得额外的课程或分支课程。
