OPW Clean Energy Solutions 成立于 2021 年 12 月,当时 OPW 收购了 ACME Cryogenics 和 RegO Products,2024 年 7 月,随着 Demaco、Marshall Excelsior Company (MEC) 和 SPS Cryogenics,投资组合扩大到五家公司。ACME 是任务关键型低温产品和服务的领先提供商,这些产品和服务促进了低温液体和气体的生产、储存和分销。RegO 是面向低温和液化气终端市场的高度工程化流量控制解决方案的领先提供商。Demaco 是一家专门为低温行业设计的真空绝缘解决方案的设计者、开发者、建造者、测试者和安装者。MEC 是用于处理压缩和液化气体的严苛服务流量控制解决方案的领先开发商。SPS Cryogenics 是用于低温应用的管道系统和辅助设备的开发商。他们共同将 OPW 带入传统燃料解决方案之外,并帮助确定替代能源市场的未来发展方向。有关 OPW 清洁能源解决方案的更多信息,请访问 www.opwces.com。
CRISPR 介导的原代人类淋巴细胞基因组编辑通常通过电穿孔进行,这可能具有细胞毒性、繁琐且成本高昂。本文我们展示了通过递送与筛选确定的两亲肽混合的 CRISPR 核糖核蛋白可以大幅提高编辑后的原代人类淋巴细胞的产量。我们通过递送 Cas9 或 Cas12a 核糖核蛋白或腺嘌呤碱基编辑器敲除 T 细胞、B 细胞和自然杀伤细胞中的基因来评估这种简单递送方法的性能。我们还展示了肽介导的核糖核蛋白递送与腺相关病毒介导的同源定向修复模板配对可以在 T 细胞受体 α 恒定位点引入嵌合抗原受体基因,并且工程细胞在小鼠中表现出抗肿瘤效力。该方法干扰最小,不需要专用硬件,并且与通过顺序递送的多重编辑兼容,从而最大限度地降低了基因毒性的风险。肽介导的核糖核蛋白细胞内递送可能有助于制造工程化 T 细胞。
通过碱基编辑在人类β珠蛋白基因 ( HBB ) 中引入天然存在的 Hb G-Makassar 变异,以消除聚合镰状蛋白 HbS(镰状细胞性贫血的主要分子驱动因素),这代表了治疗这种疾病患者的潜在新模式。虽然临床上正在推进几种用于治疗镰状细胞性贫血的体外基因编辑技术,但这种具有潜在变革性的细胞疗法仍然存在一些挑战,即在自体造血干细胞移植 (HSCT) 之前必须进行基因毒性骨髓清除性预处理。为了解决这个问题,我们开发了一种策略,即将一种与 CD117 结合的单克隆抗体 (mAb) 与多重工程化 HSC (eHSC) 结合,CD117 是 HSPC 上对生存至关重要的关键受体。我们的 eHSC 旨在逃避 mAb 结合并携带 Makassar 治疗性编辑。我们的工程干细胞抗体配对逃避(ESCAPE)策略旨在为当前的预处理方案提供一种非基因毒性的替代方案。
• Valentina Buffa - 逐步开发基于细胞的基因治疗产品 G3MDYF/GNT0004(rAAV8 人类微肌营养不良蛋白)效力测定 - P0007 • Ricardo Rojas Gonzalez- 使用 CIMmultus® PrimaT® 整体柱开发 AAV8 纯化过程中的完整衣壳富集精制步骤 - P0012 • Christian Leborgne - 评估 IdeS 效率以降低高滴度 NAb 并允许新西兰白兔重新给药 - P0013 • Emmanuel Thevenot - 开发定量 alpha-dystroglycan 糖基化测试,用于 ATA-001-FKRP 开放标签多中心 AAV 试验中治疗的肢带型肌营养不良症 R9 患者 - P0088 • Ai Vu Hong - 通过组合多 VR 库和深度学习模型 - P0115 • Louise Mangin - 工程化的 AAVpo1.A1 载体在 X 连锁肌管性肌病模型中通过肝脏去靶向有效转导小鼠和人类骨骼肌纤维 - P0118 • Sonia Albini - 通过分裂内含肽双 AAV 方法对 MIDI 肌营养不良蛋白变体进行治疗效果 - P0124
固体中的多态性(及其扩展形式——伪多态性)在矿物学、晶体学、化学/生物化学、材料科学和制药工业中普遍存在。尽管控制(伪)多态性困难,但实现特定的(伪)多态性相和相关的边界结构是提高材料在能量转换和机电应用方面性能的有效途径。本文将伪多态相 (PP) 概念通过 CuBr 2 掺杂应用于热电铜硫化物 Cu 2- x S (x ≤ 0.25)。在 Cu 1.8 S + 3 wt% CuBr 2 中,在 773 K 时获得了 1.25 的峰值 ZT 值,比原始 Cu 1.8 S 样品高 2.3 倍。原子分辨率扫描透射电子显微镜证实了原始 Cu 1.8 S 低辉绿岩转变为 PP 工程化高辉绿岩,以及不同 PP 之间形成 (半) 相干界面,这有望增强声子散射。结果表明,PP 工程是提高 Cu-S 化合物热电性能的有效方法。预计它在其他材料中也会有用。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。
11:00 12:30 会议 1:肿瘤免疫学与免疫治疗 会议室:Rotonde 主席:Noel de Miranda (LUMC) 和 Nicky Beelen (MUMC+) 11:00 11:30 从非常规癌症类型中获得的免疫学见解:揭示替代机制 Noel de Miranda (LUMC) 11:30 11:45 四跨膜蛋白 CD37 对 B 细胞淋巴瘤中白细胞介素 6 受体纳米结构域的调控 Harry Warner (RUG) 11:45 12:00 针对急性髓系白血病中源自突变核磷蛋白-1 的 hla i 类新抗原的 T 细胞受体工程化 t 细胞 Georgia Koutsoumpli (LUMC) 12:00 12:15 为神经胶质瘢痕而编程的生殖细胞肿瘤细胞和免疫反应性小胶质细胞表征了 IDH 突变体中的 T 细胞遏制星形细胞瘤 Levi van Hijfte (Erasmus MC) 12:15 12:30 CRISPR-cas9 基因工程用于精确整合 T 细胞受体,促进多靶点 T 细胞疗法的产生 Renate Hagedoorn (LUMC)
由癌症干细胞 (CSC) 驱动的患者来源肿瘤异种移植 (PDX)/类器官 (PDO) 被视为转化肿瘤学最具预测性的模型。人们已经创建了能够反映患者群体的大型 PDX 集合,并广泛用于测试各种研究疗法,包括作为体内替代对象的群体试验。PDO 被认为是适合高通量筛选 (HTS) 的患者的体外替代品。我们通过转换现有的 PDX 库建立了一个癌症 PDX 衍生类器官 (PDXO) 生物库,并证实了 PDXO 与亲本 PDX 在基因组学、组织病理学和药理学方面具有高度相似性,表明两者之间存在“生物等效性或可互换性”。我们在此展示了 PDXO 生物库在 HTS“矩阵”筛选中的应用,包括先导化合物和适应症、免疫细胞共培养用于免疫治疗以及工程化实现体外/体内成像。这个大型生物库包含 550 多个不同癌症的 PDX/PDXO 配对,可能成为未来癌症药物研发的有力工具。
模型预测与实际过程之间的差异,称为过程 - 模型不匹配18(PMM)仍然是生物过程优化的严重挑战。以前,我们提出了19个硅/电池内控制器(HISICC)概念的混合动力,将基于模型的优化与基于细胞的20反馈相结合,以解决PMM问题。在此,采用了这种方法来调节细胞内21浓度限制酶。使用工程化的22大肠杆菌菌株(FA3)证明了高级HISICC(FA3)。该菌株具有一个内部反馈控制器,23,它响应感测到该酶形成的24个丙6Lonyl-COA浓度,从而减速了乙酰辅酶A羧化酶(ACC)过表达。FA3的数学模型构建了25,并使用实验数据进行了验证。假设各种PMM的模拟显示,使用FA3的HISICC 26可以通过鲁棒制动其27的过表达来有效地减轻过度ACC的毒性,从而最大程度地减少了产量损失。这项研究证实了HISICC是提高28种生物处理效率的可行策略,尤其是在平衡瓶颈酶水平方面。29
简介:先天性心脏病是与出生缺陷相关的死亡的主要原因,每 100 个活产婴儿中就有 1 个患有先天性心脏病。诱导性多能干细胞技术使得体外研究患者来源的心肌细胞成为可能。为了研究这种疾病并评估潜在的治疗策略,需要一种将这些细胞生物工程化为生理上准确的心脏组织模型的方法。方法:为了实现这一点,我们开发了一种方案,以 3D 生物打印心脏组织结构,该结构由基于层粘连蛋白-521 的水凝胶生物墨水中的患者来源的心肌细胞组成。结果:心肌细胞保持活力并表现出适当的表型和功能,包括自发收缩。根据位移测量,收缩在 30 天的培养期间保持一致。此外,根据肌节结构和基因表达分析,组织结构表现出逐渐成熟。基因表达分析还显示,与 2D 细胞培养相比,3D 结构的成熟度增强。讨论:患者来源的心肌细胞和 3D 生物打印的结合为研究先天性心脏病和评估个性化治疗策略提供了一个有前景的平台。
