摘要:生物废水处理是各种微生物将有毒化学物质降解为小的、环境友好的分子的过程。鉴于传统的物理和化学净化方法成本高、不可持续且不具针对性,生物处理在废水处理领域发挥着越来越重要的作用。生物处理策略的有效实施在很大程度上依赖于微生物的内在降解能力及其与污染物的相互作用。在这篇综述中,我们将重点介绍生物催化剂和生物反应器层面上工程化和改进生物处理的最新技术进展。具体来说,我们将讨论合成生物学在增强生物吸附和生物转化方面的进展,以及在受污染场所应用工程微生物所面临的挑战。我们将进一步回顾生物反应器设计的最新发展,特别是增材制造/生物打印的前景,通过复杂的三维结构和灵活的材料选择进一步优化生物反应器内部的物质传输。这些研究工作重新定义了生物处理的前沿,为经济、高效、可持续的废水处理开辟了新的机遇。
摘要:生物废水处理是各种微生物将有毒化学物质降解为小的、环境友好的分子的过程。鉴于传统的物理和化学净化方法成本高、不可持续且不具针对性,生物处理在废水处理领域发挥着越来越重要的作用。生物处理策略的有效实施在很大程度上依赖于微生物的内在降解能力及其与污染物的相互作用。在这篇综述中,我们将重点介绍生物催化剂和生物反应器层面上工程化和改进生物处理的最新技术进展。具体来说,我们将讨论合成生物学在增强生物吸附和生物转化方面的进展,以及在受污染场所应用工程微生物所面临的挑战。我们将进一步回顾生物反应器设计的最新发展,特别是增材制造/生物打印的前景,通过复杂的三维结构和灵活的材料选择进一步优化生物反应器内部的物质传输。这些研究工作重新定义了生物处理的前沿,为经济、高效、可持续的废水处理开辟了新的机遇。
线性玻色子模式为量子信息处理提供了一种硬件高效的替代方案,但需要访问一些非线性才能实现通用控制。光子学中非线性的缺乏导致了基于编码测量的量子计算,它依赖于线性操作,但需要访问资源丰富的(“非线性”)量子态,例如立方相态。相比之下,超导微波电路提供可工程化的非线性,但受到静态克尔非线性的影响。在这里,我们展示了由超导非线性不对称电感元件 (SNAIL) 谐振器组成的玻色子模式的通用控制,这由 SNAIL 元件中的原生非线性实现。我们通过在克尔自由点附近操作 SNAIL 来抑制静态非线性,并通过快速通量脉冲动态激活高达三阶的非线性。我们通过实验实现了一组通用的广义压缩操作以及立方相门,并利用它们在 60 纳秒内确定性地准备立方相态。我们的研究结果开创了多项式量子计算的实验领域,该领域最初由 Lloyd 和 Braunstein 引入了连续变量概念。
我们有两个业务部门:高性能材料和部件 (HPMC) 和先进合金和解决方案 (AA&S)。HPMC 部门的主要重点是最大限度地提高航空发动机材料和部件的增长,其约 80% 的收入来自航空航天和国防市场,其中约 60% 的收入来自商用喷气发动机产品。过去几年,商用航空航天产品一直是 HPMC 销售和 EBITDA 增长的主要来源,预计随着这些市场的需求从 2020 年 COVID-19 大流行导致的下降水平中恢复,这些产品将继续推动 HPMC 和 ATI 的整体业绩。其他主要的 HPMC 终端市场包括医疗和能源。HPMC 生产各种高性能材料、部件和先进的金属粉末合金。它们由镍基合金和超级合金、钛和钛基合金以及各种其他特种材料制成。能力范围从铸造/锻造和粉末合金开发到高度工程化的成品部件的最终生产,包括用于下一代喷气发动机锻件和 3D 打印航空航天产品的部件。
图 1. PGM2 的修复使 S. boulardii 能够代谢半乳糖 (a) 该图说明了 Sb 中的半乳糖利用途径,其中失活的 PGM2 酶导致有毒中间体积累。(b) 工程化的 SbGal⁺ 途径显示 PGM2 活性的恢复,从而实现高效的半乳糖代谢。(c) 野生型 Sb MYA-796 和基因修复的 Sb MYA-796 (SbGal⁺) 在具有各种碳源的完全合成培养基 (CSM) 中的生长比较。数据显示 SbGal⁺ 在 2% 半乳糖上的生长得到改善,证明了 PGM2 修复的好处(橙色突出显示)。在木糖和乳糖等不利用半乳糖代谢途径的替代糖上,Sb 和 SbGal⁺ 之间的生长差异很小甚至没有。 SbGal ⁺ 在棉子糖与葡萄糖共存时,生长增强,表明该菌株在肠道等复杂的糖环境中具有提高性能的潜力。值代表在所示培养基中生长 36 小时的三个生物重复的终点光密度的平均值。
受损脊髓组织的有效再生和功能恢复一直是再生医学领域关注的焦点。由于血脊髓屏障 (BSCB) 的阻塞、药物缺乏靶向性以及损伤部位的病理生理学复杂,脊髓损伤 (SCI) 的治疗具有挑战性。脂质纳米囊泡,包括细胞衍生的纳米囊泡和合成脂质纳米囊泡,具有高度的生物相容性,可以穿透 BSCB,因此是针对性治疗 SCI 的有效递送系统。我们总结了脂质纳米囊泡在 SCI 靶向治疗方面的进展,讨论了它们的优势和挑战,并对脂质纳米囊泡在 SCI 治疗中的应用进行了展望。虽然大多数基于脂质纳米囊泡的 SCI 治疗仍处于临床前研究阶段,但这种低免疫原性、低毒性和高度可工程化的纳米囊泡将为未来的脊髓损伤治疗带来巨大的希望。
自然界中充满了以纤维和生物复合材料形式存在的结构材料,它们经过亿万年的进化选择,已经达到了惊人的效率和性能水平 (O'Brien 等人,1998)。尽管这些天然聚合物在某些情况下由于其成本、功能和消费者偏好而具有商业重要性,但与质量变化相关的缺点以及它们亲水性和低热稳定性已导致它们被具有更理想性能的合成聚合物所取代 (Kalia 等人,2009)。随着 20 世纪初有机化学和石油基化学的出现,天然聚合物越来越多地被合成聚合物和纤维开发所取代,多年前,合成聚合物和纤维开发产生了一系列新产品,如尼龙、聚酯、丙烯酸、芳纶、斯潘德克斯、烯烃树脂和纤维,具有优异的拉伸强度和应力-应变行为 (O'Brien 等人,1998)。一种新型的“工程化”肽基生物聚合物引起了广泛关注,它由源自两项科学发展的材料组成:对蛋白质结构功能的日益了解,提供了可用于设计重复的肽基序,
分子农民Maya Sapir-Mir(左)和Raya Liberman-Aloni正在接受全球烹饪的最爱,并将其转变为低成本生物反应器以生产卵子蛋白。他们在2022年建立了Polopo,以设计土豆植物以生产蛋清蛋白质,而无需昂贵的生物反应器。该公司位于以色列的内斯Ziona,已开始首次实地试验,种植了富含蛋白质的块茎。Ovalbumin是蛋清中的主要蛋白质,是食品制造商作为成分所追捧的,因为它有助于提高营养价值并延长包装产品的保质期。团队通过将整个卵蛋白DNA序列插入叶片,从而设计了马铃薯,因此,该序列包含了产生功能齐全的蛋白质的指令,该蛋白质在营养和化学上与鸡蛋中的蛋白质相同。将养分从叶子移到块茎的韧皮部运输了工程化的椭圆蛋白产品。遗传改性的polopo马铃薯看起来与原始的polopo相同,具有其优势,并将蛋白质储存在块茎中,实际上像迷你抗反应器一样有效地发挥作用。这些植物的生长快且廉价地培养,并且由于它们在遗传上与第一个
可遗传的免疫是通过将免疫直接嵌入传播人类病原体的野生物种的基因组中来控制传染病的一种有希望的方法。在这里,我们报告了Mus Musculus的基因工程,以产生一种中和保护性的单链抗体,以抗莱姆病的病原体Borrelia Burgdorferi。工程小鼠稳定地产生了多代LA-2 SCFV-α-α融合蛋白,表现出强大的遗传力和基因表达的稳定性。在感染和未感染的tick虫下进行顺序挑战后,杂合小鼠对感染表现出强烈的抵抗力,有效地中断了Borrelia burgdorferi疾病传播周期。最近建立了新颖的方案,以基因设计白脚小鼠,莱索普斯(Peromyscus leucopus)是莱姆病的关键储层,这些发现表明,可行性免疫是缓解环境中莱姆病的潜在策略的可行性。更广泛地,工程化的储层免疫力可以提供一种可概括的方法来控制媒介传播和人畜共患病,具有改善人类健康的巨大潜力。
农杆菌是一种杆状土壤细菌,以其将肿瘤诱导质粒 (Ti 质粒) 片段转移到植物细胞的独特能力而闻名。这种机制已广泛应用于植物基因工程。本综述深入探讨了农杆菌与植物细胞之间复杂的生物相互作用,包括细菌附着、毒力 (Vir) 基因的激活、T 复合物的产生和运输以及 T-DNA 整合到植物染色体中的关键步骤。此外,本综述还研究了农杆菌作为转化工具的工程化,重点研究了 Ti 质粒的修饰以创建二元和共整合载体系统,这大大提高了转化方案的效率和多功能性。本文还重点介绍了农杆菌介导的转化在可食用疫苗生产中的应用。通过详细研究农杆菌介导转化的生物学、技术和实践方面,本综述旨在为优化该技术以用于各种植物生物技术应用提供见解。最终,了解和改进农杆菌介导转化对于推进植物生物技术至关重要。
