本文提出了一种基于全局-局部建模方法的轻型结构多尺度优化策略。该方法应用于民用飞机的实际机翼结构。机翼的初步设计可以表述为一个约束优化问题,涉及结构不同尺度的若干要求。所提出的策略有两个主要特点。首先,问题以最一般的意义来表述,包括每个问题尺度所涉及的所有设计变量。其次,考虑两个尺度:(i)结构宏观尺度,使用低保真度数值模型;(ii)结构中观尺度(或组件级),涉及增强模型。特别是,结构响应在全局和局部尺度上进行评估,避免使用近似分析方法。为此,完全参数化的全局和局部有限元模型与内部遗传算法交互。只为结构最关键的区域创建精炼模型,并通过专用的子建模方法链接到全局模型。
氟培养物归功于氟原子的存在,氟原子的存在形成了强大的C-F键。这些材料表现出较高的热,化学,衰老,紫外线和耐候性,以及对油,溶剂,水和土壤的极大驱动。此外,它们具有低折射率,易燃性和介电常数,并具有高度保护氧化和水解降解[1] [2]。荧光植物体的独特特性可在电子,汽车,航空航天,石化和微电子学等新兴高科技行业中进行创新应用。这些行业要求具有特殊化学惰性的材料以及在广泛温度范围内保持出色特性(包括柔软度和弹性)的能力。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的过程,通常需要其他制造技术(例如热处理和表面处理操作)来实现高质量的组件。为了优化给定组件的每个单独过程,必须考虑和了解其在整个过程链中的进展,这可以通过使用经过验证的模型来实现。本文旨在概述可用于开发 MPBF 流程链数字孪生的各种建模技术,包括物理和数字实体之间的数据传输方法和不确定性评估。通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造流程链模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
迭代生命周期模型在软件工程中已经变得流行,例如在敏捷开发中。相比之下,瀑布模型似乎在制造工程学科中占主导地位。这包括飞机工程和波音公司开发其最新客机 777 的项目。本文介绍了 777 开发的各个阶段,并将此过程与迭代开发进行了比较。比较表明了两个观察结果:首先,777 项目中的整体瀑布方法似乎受到机翼等飞机部件的物理制造性质以及安全问题的影响。其次,还可以确定 777 开发中的几个迭代元素。其中一个主要来源是开发的数字化,特别是使用 CAD 工具进行称为数字预装配的过程。
增强现实 (AR) 通过简化上下文信息的处理来增强对复杂情况的理解。航空业的维护活动包括在行业和工作环境的严格约束下对各种高科技产品执行的复杂任务。AR 工具似乎是改善工人与技术数据之间交互以提高航空维护活动的生产率和质量的潜在解决方案。然而,由于缺乏方法和工具来协助在该领域整合和评估 AR 工具,对 AR 对工业流程的实际影响的评估有限。本文介绍了一种部署适合维护工人的 AR 工具的方法,以及选择工业环境中影响的相关评估标准的方法。该方法用于设计用于维护车间的 AR 工具,对实际用例进行实验,并观察 AR 对所有工人资料的生产率和用户满意度的影响。进一步的工作旨在将结果推广到航空业的整个维护过程。使用收集到的数据应该能够预测 AR 对相关维护活动的影响。
1.2. 工艺控制优化 通过选择合适的 AM 方法并优化所用 AM 方法的工艺参数,可以实现质量保证改进。最简单的方法是改变次优工艺类型和工艺参数(包括所选材料)的组合,并反复评估质量,直到达到令人满意的质量。这是一种成本高昂且耗时的方法。但是,操作员可能会在一定操作期后获得足够的经验来减少这些迭代。此方法的准确性和速度还取决于评估技术的准确性;否则,操作员将获得相对不正确的经验。 AM 工艺的工艺参数优化可以利用分析性破坏性测试 (DT) 和/或功能性无损检测 (NDT) 方法。X 射线计算机断层扫描 (X 射线 CT) 技术属于 NDT 方法。文献中报道了材料挤压和喷射工艺的 AM 样品的 DT(拉伸试验)和 NDT(X 射线和超声波)数据之间的相关性。发现相关性是线性的[11],[12]。
用于研究用途或进一步制造。不可用于诊断用途或直接用于人类或动物。© 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。COL36019 0924
目标 为了在全球工业环境中保持竞争力,向可持续和绿色加工和生产工艺的过渡似乎是关键一步。这意味着必须考虑和转变该链中涉及的加工工艺的每个环节,从而提出需要回答的重大科学和技术问题。因此,本课程将介绍制造业的未来挑战,并浏览 i) 加工原理与整个生产过程相联系的背景,ii) 制造过程建模和优化的要求,iii) 主要输入数据的特征,特别强调能源效率和环境足迹,以及 iv) 如何建立战略方法来制定工艺的技术/经济计划和质量。 关键词:加工、切屑形成、热机械负荷、效率、建模、表面完整性
摘要 工业化和全球经济的快速发展导致工作场所伤害和事故数量增加。如今,随着技术的进步和可靠性,由设备和机械故障引起的事故似乎正在减少。然而,人为因素往往成为工作场所事故的重要因素。统计报告和证据表明,大约 80% 到 90% 的工作相关事故可归因于人为因素。值得注意的是,人为事故的概念随着时间的推移而演变。几十年前,人为事故被定义为人与机器之间的接触、工作场所或操作系统内不良的工作场所和设备设计。近年来,对人为事故的研究呈现出变化的趋势。人们更多地关注导致工作场所人为事故的个人因素和组织因素。此外,工作场所的安全沟通在减少人为事故方面发挥着至关重要的作用。工人和领导之间的有效沟通被认为有助于降低人为事故发生的风险。因此,本研究回顾了人为事故和安全沟通方面的文献。为探讨安全沟通与人为事故的关系,向制造企业生产工人发放300份调查问卷
ST 深圳(中国)组装和测试线升级为工业级 SO8N 封装 105°C EEPROM 产品 SO8N 封装 105°C EEPROM 产品被所有客户和所有应用广泛地大批量使用。为了长期保持高水平服务和支持大批量生产,ST 决定将组装和测试线从高密度(HD)条带测试线转换为超高密度(SHD)条带测试线。这两条线都安装在 ST 深圳(中国)。自 2012 年以来,SHD 条带测试线已经为工业市场生产大批量 EEPROM SO8N 产品。有什么变化?ST 深圳(中国)的 SO8N 封装 105°C EEPROM 组装和测试从高密度(HD)条带测试线升级为超高密度(SHD)条带测试线。SHD 组装线以更高的并行度运行,组装流程与当前的 HD 线相同。随着持续改进,在芯片贴装和引线键合之间引入了等离子清洗步骤。已对引线框架尺寸进行了合理化。 SHD 条带测试线具有更高的并行度,并且测试流程和测试顺序与当前 HD 线相同。 SHD 条带测试线采用与当前 HD 线相同的测试设备运行。有关装配和测试流程的更多详细信息,请参阅附录 B。 为什么? 意法半导体存储器部门的战略是长期为客户提供产品和服务质量支持。 根据这一承诺,这一变革将确保长期可用性和 105°C SO8N 产能,同时提高产品制造质量。 什么时候? 发货将从 2023 年第 01 周开始。 当前 HD 条带测试线上的 105°C EEPROM SO8N 生产将持续到 2023 年 6 月底,以便有时间逐步提高 SHD 生产线的产能。 从 2023 年 6 月起,105°C EEPROM SO8N 产品将仅在 SHD 线上生产。 如何认证变更? 此变更已使用标准意法半导体公司质量和可靠性程序进行了认证。组装资格报告 RERMMY2005 现已提供,包含在本文档中。测试 (I2C/SPI) 资格报告 TERMMY2005-2 预计于 2022 年第 26 周发布。