摘要在本文中,我们探讨了各种深度学习技术来开发机器学习模型,以预测患者的第二次自动评估的肌萎缩性侧面硬化功能评级量表(ALSFRS-R)得分,以预测肌萎缩性侧向硬化功能评级量表(ALSFRS-R)。要执行任务,使用自动编码器和多个插补技术来处理数据集中存在的缺失值。预先处理数据后,使用随机的森林算法进行特征选择,然后开发了4个深神经网络预测模型。使用多层感知器(MLP),Feed Hearver Near Network(FFNN),复发性神经网络(RNN)和Long-Short术语记忆(LSTM)开发了四个预测模型。However, the developed models performed poorly when compared to other models in the global ranking hence, 3 more algorithms (Random Forest, Gabbing Regressor and XGBoost algorithm) were used to improve the performance of the models and the developed XGBoost algorithm outperformed other models developed in this paper as it produces minimal MAE and RMSE values.
苯是一种化学原料,在生产高能固液燃料和聚合物时被广泛使用,无可替代。因此,全球每年对苯的需求量达到 5100 万吨。利用 Peng-Robinson 状态方程性质包,过程模拟器已用于模拟通过甲苯加氢脱烷基化生产苯的反应器系统。该系统设计为每年生产 200,000 吨苯,并采用优化的热流机制。通过使用利用废热锅炉 (WHB-01) 和部分冷凝器 (PC-01) 的热流出口的热回收策略,通过将热流分别引导至加热器 H-01 和 H-02,总共节省了 -23,915,490.40 kJ/h,有效地降低了模拟中的净能量。考虑到这一策略,反应器系统内的改进工艺比基本工艺系统更加优化。版权所有 © 2024 作者,由 Universitas Diponegoro 和 BCREC Publishing Group 出版。这是一篇根据 CC BY-SA 许可开放获取的文章(https://creativecommons.org/licenses/by-sa/4.0)。关键词:苯;甲苯;加氢脱烷基化;模拟;净能量优化 引用方式:EI Maulana、A. Tarikh、RT Widaranti,(2024 年)。通过优化反应器系统中的传热单元,最大限度地降低加氢脱烷基化甲苯工艺生产苯的能耗。化学工程研究进展杂志,1 (2),97-107(doi:10.9767/jcerp.20167)永久链接/DOI:https://doi.org/10.9767/jcerp.20167
“干涂层”的技术方法允许消除能源密集型干燥步骤,以节省大量能源和成本。“ F. Degen和O.Krätzig,“电池生产的未来:新型生产技术作为工程决策指南的广泛基准”,《工程管理交易》,doi:10.1109/tem.2022.3144882。
选择 Chart Industries(纽约证券交易所股票代码:GTLS)的中型模块化液化解决方案作为其即将推出的战略决策
该方法可以打印具有高分辨率、复杂几何形状以及精细细节和光滑表面的物体。特别值得注意的是,材料喷射能够以“全彩”方式打印物体,即以任意颜色和颜色渐变,并同时使用多种材料打印物体,从而实现多种颜色和材料组合。作为立体光刻技术的一种先进变体,材料喷射技术为高度精细且对美观度要求高的物体提供了更广泛的制造可能性,使其成为各个工艺领域的一项宝贵技术。材料喷射通常比其他 3D 打印技术更昂贵,因为它使用复杂的打印头技术和专门开发的材料。
甲基氯,又称氯甲烷,在生产各种工业产品中起着至关重要的作用。目前,印度尼西亚对甲基氯的需求超过了生产水平,因此设计甲基氯工厂至关重要。本研究重点是通过探索强调能源效率和高纯度的模拟来改善甲基氯的生产,从而提高经济性和可操作性。本研究的目的是开发一种从甲醇和氯化氢生产甲基氯的工艺设计,旨在提高能源效率、建设环保工厂和生产高纯度的甲基氯产品。该研究采用迭代模拟方法比较甲基氯生产的基本工艺和改进工艺。该过程包括使用 Aspen HYSYS 构建模拟模型,使用 Aspen Energy Analyzer V12 分析模拟结果,并迭代调整工艺参数,直到达到所需的性能或结果。研究结果表明,与甲基氯基础工艺相比,甲基氯改进工艺的能耗更低。此外,改进工艺的碳排放量极少,是一种可持续且环保的设计。此外,改进工艺生产的氯甲烷纯度更高。在初始工艺中,氯甲烷纯度为 98.17%,而在改进工艺中,氯甲烷纯度提高到 99.35%。从这三个方面来看,改进工艺比基本工艺系统效率更高。版权所有 © 2024 作者,由 Universitas Diponegoro 和 BCREC Publishing Group 出版。这是一篇根据 CC BY-SA 许可开放获取的文章 (https://creativecommons.org/licenses/by-sa/4.0)。关键词:Aspen HYSYS;脱氢氯化;迭代模拟方法;氯甲烷引用方式:Ahdan, M., Saputra, AR, Ivan, R., Panjaitan, YM (2024)。改进甲醇和氯化氢脱氯化氢工艺设计,实现节能环保,生产高纯度氯甲烷。化学工程研究进展,1 (2),84-90 (doi: 10.9767/jcerp.20090) Permalink/DOI : https://doi.org/10.9767/jcerp.20090
摘要艺术家将带领六个两个小时的研讨会与大约20个参与者一起收集他们的声音和观点,以开发与两个小组共同创作的最后一件作品。他们将与参与者紧密合作,通过映射研讨会来指导WO RK的艺术方向,从而促进围绕从年轻一代到年长的Thi Rsk的不同观点进行讨论,探索遗产,弥合世代GAP,并讨论Thirsk的未来希望。的目的是将对话转移到他们希望最终艺术品将与更广泛的Thirsk社区交流的内容。艺术家将从映射研讨会中整理发现最终艺术品的概念,并将其介绍给小组以进行进一步的参考。然后,艺术家将领导三个会议,将ticipants的作品带走,以创建完整的专业最终艺术品。这一过程的一个关键方面是,艺术家不会以先入为主的想法来接触该项目,而该过程是一个真正的合作。
可靠性和坚固性:• 久经考验的涡旋压缩机:确保可靠运行。• 风冷微通道冷凝器:重量轻、高效、耐腐蚀。• 集成水力模块:简化安装和维护。• 适用于各种行业,包括机械工程、金属加工、食品和饮料以及制药。
本体尺寸 35.0mm 方形 35.0mm 方形 32.5mm 方形 35mm 方形 27.0mm 26.0mm 方形 21.0mm 方形 15.0mm 方形 引脚数 1140 1144 624 1152 429 572 357 165 间距 1.00mm 1.00mm 1.27 mm 1 mm 1.27mm 1.00mm 1.00mm 1.00mm 基材厚度
摘要:NCA电池占市场份额的8%,文献缺乏回收研究和通往具有成本效益的回收过程的途径。目前的研究旨在开发NCA圆柱电池的湿法铝回收过程。细胞被排出,然后在浸出之前进行身体治疗。评估了三种不同的酸:H 2 SO 4,H 3 PO 4和柠檬酸。由于存在Al箔,因此不需要减少剂,从而降低了浸出成本。柠檬酸代表了一种更好的成本效益的选择,但固体 - 液体分离代表了该过程的缺点。H 2 SO 4 SO 4在90°C下浸出90分钟,固体 - 液体比为1/5和2.0 mol/l,而无需Cu浸出,Al通过沉淀分离,然后使用Cyanex 272进行溶剂提取,以进行CO分离。ni作为氢氧化物获得,LI结晶为硫酸盐。质量平衡表明,在湿法铝处理中,约有92%的LI,80%和85%的CO可以回收。纯度> 95%的产品可用于电池和不锈钢生产。该过程有可能具有低CO 2足迹,未来的研究将探索它。