2. 上海航天设备制造有限公司,上海 200245) 摘要:液压胀形工艺可以实现大型储罐底部的整体成形,但其质量受诸多工艺参数的影响。针对整体储罐底部液压胀形过程中出现的起皱、开裂缺陷,建立了以预胀压力、液压压力、压边力、压边圆角半径等工艺参数为优化目标的多目标优化模型。基于有限元仿真,利用Kriging技术建立工艺参数与质量标准之间的代理模型。采用NSGA-III算法,在储罐底部达到壁厚变化量最小、断裂趋势最小、翻边皱褶最小、皱褶趋势最小等目标的条件下,确定最优工艺参数。与粒子群优化(PSO)算法相比,NSGA-III算法更适合求解该优化问题。通过仿真实验验证了该方法的有效性和结果的准确性。关键词:储罐·液压成形·克里金法·NSGA-III
本研究通过在正常大气条件下使用销盘磨损试验机进行磨损试验,分析了 Mg-TiO 2 纳米复合材料的干滑动磨损行为。试验期间考虑的工艺参数是 TiO 2 纳米颗粒的重量分数、法向载荷和滑动速度。试验期间,滑动距离和磨损轨道直径分别保持恒定在 1500 m 和 90 mm。性能指标是累积磨损和摩擦系数。本研究采用基于田口的灰色关联分析来优化纳米复合材料的磨损行为。本研究中考虑的实验设计是 L9 正交阵列,每个工艺参数分为三个级别。计算每个实验的灰色关联度 (GRG),发现工艺参数组合 A3B2C1 获得的最大 GRG 为 0.825,分别对应于 5wt% TiO 2、1 kg 法向载荷和 1.5 m/s 滑动速度。将初始估算的 GRG 与最佳工艺参数的预测值和实验值进行比较,发现 GRG 分别提高了 2.2% 和 0.77%。进行方差分析 (ANOVA) 以估计对纳米复合材料的磨损行为有显著影响的工艺参数,随后得出结论,除其他因素外,工艺参数法向载荷是最重要的因素。
浓度会根据污染程度和系统技术而变化。工艺参数(时间和温度)必须根据要处理的部件/材料进行调整。使用完全去离子水是实现可重复质量的基本要求。
问题 – 高流动性铝合金和镁合金无法通过减小截面实现轻量化 – 高强度合金(A201、A206)无法压铸 目标 – 开发用于薄壁应用的高流动性合金、加工参数和模具设计方法 – 开发用于高强度合金(如 A201 和 A206)的 SSM 和挤压铸造工艺参数 优势 – 通过减轻重量、提高强度和提高生产可靠性实现更高质量/性能的部件 – 通过缩短周期时间、减少金属用量和增加模具寿命实现成本节约 – 通过增加模具寿命实现供应链可靠性 – 环境改善(降低能耗) 里程碑/可交付成果 – 薄壁合金成分和工艺参数 – 高强度铝合金加工参数 – 属性数据 – 模具和工艺设计的计算机建模方法
在 Inconel 718 的激光定向能量沉积 (L-DED) 中,所制造部件的微观结构在很大程度上取决于所应用的工艺参数和由此产生的凝固条件。大量研究表明,工艺参数沉积速度和激光功率对微观结构特性(如枝晶形态和偏析行为)有重大影响。本研究调查了当线质量(从而导致的层高)保持不变时,这些工艺参数的变化如何影响微观结构和硬度。这使得能够对使用相同层数但工艺参数截然不同制造的几何相似样品进行微观结构比较。这种方法的好处是,所有样品的几何边界条件几乎相同,例如特定于层的构建高度和导热横截面。对于微观结构分析,应用了扫描电子显微镜和能量色散 X 射线光谱,并以定量方式评估结果。沿堆积方向测量了微观结构特征,包括一次枝晶臂间距、沉淀 Laves 相的分数和形态以及空间分辨的化学成分。使用半经验模型,根据一次枝晶臂间距计算发生的冷却速率。应用了其他研究人员使用的三种不同模型,并评估了它们对 L-DED 的适用性。最后,进行了显微硬度测量,以对材料机械性能的影响进行基线评估。
金属基增材制造 (AM) 被认为是一种很有前途的技术,由于该工艺具有无与伦比的设计灵活性,因此具有许多潜在的应用。AM 的工作原理是逐层“构建”零件,例如添加材料而不是去除材料。因此,可以实现传统制造无法实现的新设计和创新。然而,由于工艺缺乏可重复性和可靠性,以及制造零件的结构性能不确定,这种材料制造技术的全部效用仍未实现。为了克服这些挑战,必须建立整合工艺参数、热历史、凝固、所得微观结构和 AM 工艺制造零件的机械行为的关系。从这个角度来看,本期特刊的目标是重点介绍工艺监控、材料特性和计算建模方法方面的最新进展,旨在加深对金属 AM 材料的工艺参数-结构-性能关系的理解。
摘要:涉及高斯过程 (GP) 的多保真度 (MF) 替代物用于设计激光定向能量沉积 (L-DED) 增材制造 (AM) 中的时间过程图。过程图用于建立熔池特性(例如熔池深度)与工艺参数(例如激光功率和扫描速度)之间的关系。MFGP 替代物涉及高保真度 (HF) 和低保真度 (LF) 模型。选择 Autodesk Netfabb ® 有限元模型 (FEM) 作为 HF 模型,而选择 Eagar-Tsai 开发的分析模型作为 LF 模型。结果表明,MFGP 替代物能够成功地融合不同保真度模型中存在的信息,以设计时间前向过程图(例如,给定一组真实深度未知的工艺参数,熔池深度是多少?)。为了扩展新开发的建立时间逆过程图的公式(例如,为了实现所需的熔池深度,但不知道真实工艺参数,那么作为时间函数的工艺参数的最佳预测是什么?),在计算预算约束下,通过将 MFGP 代理与贝叶斯优化 (BO) 相结合来进行案例研究。结果表明,与单精度 (SF) GP-BO 相比,MFGP-BO 可以显著提高优化解决方案的质量,同时降低计算预算。与仅限于开发稳态正向过程图的现有方法相比,当前的工作成功地展示了在 L-DED 中实现结合不确定性量化 (UQ) 的时间正向和逆过程图。
摘要 电子束粉末床熔合制造部件是一种复杂的增材制造工艺,在航空航天和许多工业过程中具有广泛的优势。它降低了成本,并且对粉末粒度有更大的要求。与激光粉末床熔合工艺相比,这具有更高的质量沉积速率,从而缩短了生产时间。粉末床制造工艺通常会导致沿构建方向形成柱状晶粒结构,从而产生具有各向异性的物理和机械性能的组件。这是限制该技术应用的主要问题。为了促进等轴晶粒的形成,以及细化柱状形态和消除各向异性,需要考虑工艺条件和孕育剂或异质成核位点的存在的作用。在本研究中,通过添加氮化钛孕育剂,利用熔化策略和可变工艺参数促进铁素体不锈钢中柱状晶粒向等轴晶粒的转变。我们发现,热梯度 (G) 与凝固速率 (R) 之比 (G/R 比) 控制着晶粒形态和纹理:低 G/R 比已被证明可以促进等轴晶粒的形成。研究了这种转变的工艺条件。在 Freemelt One 机器中打印单线轨迹后对样品进行分析,然后借助光学显微镜进行研究,以确定导致柱状晶粒成功转变为等轴晶粒的机器参数组合。研究得出结论,在低热梯度、高扫描速度和低面积能量的条件下,等轴晶粒的比例有所增加。最终,需要进一步研究以确定促进铁素体不锈钢从柱状晶粒转变为等轴晶粒的确切工艺参数。未来的研究人员可以使用这项研究的结果来创建这种钢种的凝固图,并帮助行业定制铁素体不锈钢中的特定纹理,以实现所需的微观结构和机械性能。关键词:增材制造、E-PBM、孕育、工艺参数、TiN、CET
在用于金属增材制造的激光束直接能量沉积 (DED-LB/M) 领域,从监测数据和降阶模型实施部件鉴定策略目前还处于较低成熟度。在本文中,提出了一种方法和一套新颖的数据分析工具,旨在联合分析多模态数据:工艺参数、同轴热成像和通过计算机断层扫描获得的零件质量。为了演示所提出的方法,构建了一组具有不同工艺参数(功率、工艺速度)和路径规划策略的不锈钢试样。对数据集进行了探索性数据分析和特征工程:工艺指标、热和几何监测特征与空间分辨缺陷(主要是裂纹)以及从检查阶段获得的整体零件质量相关,为进一步实施现场工艺监控作为工艺优化和鉴定的可靠工具铺平了道路。
使用激光束的热丝定向能量沉积 (DED-LB/w) 是一种金属增材制造 (AM) 方法,具有材料利用率和沉积速率高的优点,但 DED-LB/w 制造的零件存在热输入较大和表面光洁度不理想等问题。因此,在沉积过程中调节工艺参数和监测工艺特征以控制最终质量对于确保最终零件的质量至关重要。本文探讨了 DED-LB/w 工艺的动态建模,并介绍了一种参数-特征-质量建模和控制方法,以提高建模质量和对无法现场测量的零件质量的控制。该研究调查了影响单层和多层焊珠中熔池宽度(特征)和焊珠宽度(质量)的不同工艺参数。提出的建模方法使用参数特征模型作为 F 1 和特征质量模型作为 F 2 。比较了线性和非线性建模方法来描述工艺参数和工艺特征即熔池宽度 (F 1 ) 之间的动态关系。采用全连接人工神经网络根据熔池特征 (F 2 ) 对最终部件质量(即熔滴宽度)进行建模和预测。最后,通过将参数特征 (F 1 ) 和特征质量 (F 2 ) 模型集成到部件宽度的闭环控制中,测试并验证了所提出的参数特征质量建模的有效性和实用性。与仅使用 F 1 的控制回路相比,所提出的方法显示出明显的优势,并有可能应用于控制无法直接测量或现场监测的其他部件质量。