模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
这项先进的技术使工程师能够从统计上模拟成型过程的所有阶段以及零件寿命的实际工作条件。有限元方法的结构设计有助于确定设计复杂系统(如仪表板组件)的最佳方案。模拟软件会分析静态载荷、振动、热膨胀、可能的蠕变效应(由于日照)和自发动态条件(例如,由头部或行人撞击引起)等条件,同时考虑材料应变率和温度依赖性的非线性行为。工艺模拟可帮助工程师在项目的早期阶段(工艺选项可行性、材料选择)或最终模具细节定义中设计模具和工艺参数。例如,在注塑应用中,可以模拟工艺的所有阶段,从填充和保压阶段开始,到模内冷却过程,再到后提取行为(收缩/翘曲)。
本文是一系列文章中的第一篇,这些文章全面讨论了微尺度增材制造工艺的最新进展,并提出了解决阻碍其可扩展性的挑战的解决方案。本文探讨了一类称为直接墨水写入/喷射工艺的增材制造技术,研究人员已使用这些技术制造具有不同几何自由度的微尺度部件。本文通过分析材料约束、几何约束和特征尺寸分辨率限制,确定了使用这些工艺进行高通量 3D 微加工的关键挑战!和吞吐量限制。虽然其中一些挑战可以通过新颖的精密工程方法克服,但还有其他几个挑战需要对材料系统、工艺参数和关键部件有深入的了解。本文确定了这些挑战并提出了消除这些挑战的潜在方法,目标是在高吞吐量下制造真正的 3D 部件。!!!
8. “天然纤维增强环氧复合材料的机械性能:综述”,ScienceDirect,Procedia Computer Science,2019 年 1 月,(Elsevier) 9. “通过灰色关联分析的田口法优化 Al2O3/Cu 复合材料的粉末冶金工艺参数”。沙特国王大学杂志,2019 年 2 月,(Elsevier)。 10. “MWCNTs/MnO2 纳米复合材料的侵蚀磨损分析”,Materials Today:Proceeding,2018 年 12 月,(Elsevier)。 11.“Cu/Al 2 O 3 复合材料在电火花加工电极中的硬度和磨损分析”,材料科学与工程,2018 年 2 月,IOP Science,(SCOPUS) 12. LM 25 合金和 LM 25 花岗岩复合材料在不同滑动速度和施加压力下的摩擦系数比较分析,IJMPERD,2018 年 6 月,(SCOPUS)
本文介绍了一种新型一阶全通滤波器配置。所提出的全通滤波器配置采用两种配置,即基于 VDVTA 和 OTA 的一阶全通滤波器配置。所提出的第一种配置采用单个 VDVTA 和一个接地电容器,而所提出的第二种配置采用两个 OTA 和一个接地电容器。所提出的两种配置都是完全电子可调的,其品质因数不依赖于可调极点频率范围。所报告的配置具有较低的主动和被动灵敏度,并且功耗较低,电源电压非常低,±0.85 V,偏置电压为±0.50 V。使用 0.18 µm CMOS 技术工艺参数验证了所提出的 VDVTA 和两个基于 OTA 的一阶全通滤波器配置的 PSPICE 模拟。
• 在此方法中,流体状态(熔融)的聚合物材料在压力下通过封闭的模具填充,并在冷却过程后取出产品。 通过改变条件,它可以用于热塑性塑料、热固性塑料、弹性体和复合材料。 该过程通过使用称为注射机的仪器来执行。 • 该机器由五个单元组成,包括:注射系统、液压系统、模具系统、驱动系统和控制系统。 • 注射系统 >>> 进料斗、料斗和螺杆(或活塞) • 液压系统 >>> 蜗轮旋转,通过推动系统关闭模具,并提供保持模具处于压力下所需的动力 • 模具系统 >>> 包含连接元件和零件、冷却设备、模具空间和注射孔。 • 推动系统 >>> 打开/关闭模具并承载模具的移动元件。 • 控制系统 >>> 控制和调整温度、压力、注射速率、螺杆位置和旋转速率等工艺参数。
增材制造使复杂结构得以制造。粉末床熔合(PBF)是制造具有高度可控几何形状的复杂结构的代表性AM技术。它涉及选择性激光熔化(SLM)、选择性激光烧结(SLS)和电子束熔化(EBM),具体取决于热源和原材料。材料类型、拓扑类型、几何特征和工艺参数对PBF结构力学性能的影响至关重要。此外,通过拓扑优化获得的大多数声学/光学/机械超材料都可以通过PBF样品实现,相关的设计原理和实施方案。此外,PBF制造的复杂部件的可靠性对于实际应用至关重要,这主要与长期使用性能有关。以上所有内容以及PBF的其他相关内容将是拟议专刊的主题。欢迎为PBF研究提供分析、数值和实验技术的投稿。
摘要:激光定向能量沉积(LDED)是金属增材制造的重要组成部分之一,具有成型速度快、成型体积大、适合零件修复等特点。LDED以激光束为热源,通过快速加热、熔化、凝固、冷却等工艺,逐层制造零部件。然而,由于热循环和加工环境复杂,LDED生产零部件的沉积质量和重复性较差,阻碍了该技术的推广。自适应控制技术(ACT)一直被认为是解决该问题的有效且潜在的方法。随着监测设备和数据处理技术的发展,许多研究集中在LDED上,建立了工艺参数、工艺特征和产品质量之间的关系,促进了ACT的快速发展。本文对LDED的ACT中存在的问题进行了回顾和讨论。© 2020 光学仪器工程师学会(SPIE)[DOI: 10.1117/1.OE.59.7.070901 ]
氮化硅 a-Si x N y :H 接触蚀刻停止层通过作用于初始电荷损失现象,强烈影响单多晶硅非挥发性存储器中的数据保留性能。其改进需要通过实验设计方法分析流入等离子体增强化学气相沉积工艺参数。a-Si x N y :H 物理电学分析指出,必须避免富含硅的成分,尤其是其界面层,以减少 a-Si x N y :H 电荷量,从而提高数据保留率。事实上,a-Si x N y :H 靠近浮栅,其电荷调制可以充当寄生存储器,通过电容效应屏蔽浮栅中存储的电荷。© 2009 美国真空学会。DOI:10.1116/1.3071846
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。